Axial Compression and Energy Absorption of the Sinusoidal Corrugated Cylinder under Impact Loading
-
摘要: 薄壁夹芯结构因其优异的吸能和轻量化特性被广泛应用于防护结构中。正弦波纹夹芯圆柱壳的制备工艺简单,在工程上应用广泛,研究其在冲击载荷下的轴向变形行为和吸能特性具有重要意义。基于准静态轴向压缩实验,对正弦形波纹夹芯圆柱壳的轴向准静态压缩进行了有限元模拟,模拟结果与实验结果吻合较好。在此基础上,探讨了夹芯圆柱壳芯层厚度A和正弦波周期数N对冲击载荷作用下夹芯圆柱壳的压溃模式和能量吸收特性的影响。结果表明,合理配置A和N能够有效地提高比吸能,实现较理想的吸能变形模式。在准静态压缩下,结构参数为A3N12的夹芯圆柱壳具有最好的比吸能,为轴对称变形。在冲击载荷作用下,发生非轴对称变形模式的A7N12具有最好的比吸能和最高的平均压缩力效率。Abstract: Thin-walled sandwich structures are commonly used in protective structures due to its lightweight performance and excellent energy absorption. In this investigation, axial deformation behaviors as well as the energy absorption are studied for the sinusoidal corrugated cylinder because of its easier manufacturing process and wider engineering application. Based on the quasi-static axial compression experiment, the corresponding numerical simulation is carried out. The experimental result agrees with the numerical one. Hence, the influence of the core thickness A and the number of sine wave cycles N is analyzed on the collapse mode and energy absorption. The results show that the proper A and N not only effectively improves the specific energy absorption but also leads to desired deformation mode. In addition, compared with other parameters of A and N, in case of A=3 mm and N=12, the sandwich cylinder under quasi-static compression exhibits axisymmetric deformation, which shows the best energy absorption property. A=7 mm and N=12 with non-axisymmetric deformation mode has the best specific energy absorption and highest average compression efficiency under impact loading.
-
表 1 不同冲击速度下结构的能量吸收对比
Table 1. Comparison of energy absorption of structures at different impact velocities
v/(m·s−1) Structure SEA/(J·g−1) PCF/kN CFE 10 A7N10 36.92 64.59 0.57 A7N12 38.03 67.93 0.56 A3N10 28.25 60.69 0.46 A3N12 30.95 62.57 0.49 20 A7N10 38.31 63.41 0.61 A7N12 39.74 67.02 0.56 A3N10 28.27 61.19 0.46 A3N12 34.82 61.91 0.56 30 A7N10 41.24 69.34 0.59 A7N12 41.31 70.04 0.58 A3N10 32.15 67.16 0.48 A3N12 37.46 75.01 0.50 -
[1] GUILLOW S R, LU G, GRZEBIETA R H. Quasi-static axial compression of thin-walled circular aluminium tubes [J]. International Journal of Mechanical Sciences, 2001, 43(9): 2103–2123. doi: 10.1016/S0020-7403(01)00031-5 [2] 朱文波, 杨黎明, 余同希. 薄壁圆管轴向冲击下的动态特性研究 [J]. 宁波大学学报(理工版), 2014, 27(2): 92–96.ZHU W B, YANG L M, YU T X. Study on dynamic properties of thin-walled circular tubes under axial compression [J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2014, 27(2): 92–96. [3] JANDAGHI SHAHI V, MARZBANRAD J. Analytical and experimental studies on quasi-static axial crush behavior of thin-walled tailor-made aluminum tubes [J]. Thin-Walled Structures, 2012, 60: 24–37. doi: 10.1016/j.tws.2012.05.015 [4] SADIGHI A, EYVAZIAN A, ASGARI M, et al. A novel axially half corrugated thin-walled tube for energy absorption under axial loading [J]. Thin-Walled Structures, 2019, 145: 106418. doi: 10.1016/j.tws.2019.106418 [5] YAO S G, ZHU H F, LIU M Y, et al. Energy absorption of origami tubes with polygonal cross-sections [J]. Thin-Walled Structures, 2020, 157: 107013. doi: 10.1016/j.tws.2020.107013 [6] ZHU G H, LIAO J P, SUN G Y, et al. Comparative study on metal/CFRP hybrid structures under static and dynamic loading [J]. International Journal of Impact Engineering, 2020, 141: 103509. doi: 10.1016/j.ijimpeng.2020.103509 [7] HOU Y B, ZHANG Y, YAN X L, et al. Crushing behaviors of the thin-walled sandwich column under axial load [J]. Thin-Walled Structures, 2021, 159: 107229. doi: 10.1016/j.tws.2020.107229 [8] WU S Y, SUN G Y, WU X, et al. Crashworthiness analysis and optimization of fourier varying section tubes [J]. International Journal of Non-Linear Mechanics, 2017, 92: 41–58. doi: 10.1016/j.ijnonlinmec.2017.03.001 [9] FU J, LIU Q, LIUFU K M, et al. Design of bionic-bamboo thin-walled structures for energy absorption [J]. Thin-Walled Structures, 2019, 135: 400–413. doi: 10.1016/j.tws.2018.10.003 [10] 侯淑娟. 薄壁构件的抗撞性优化设计 [D]. 长沙: 湖南大学, 2007: 44−57.HOU S J. Optimization design of the thin-walled components with crashworthiness criterion [D]. Changsha: Hunan University, 2007: 44−57. [11] 闫栋, 王根伟, 宋辉, 等. 类向日葵夹芯圆柱壳径向冲击数值模拟 [J]. 高压物理学报, 2020, 34(5): 054201. doi: 10.11858/gywlxb.20190858YAN D, WANG G W, SONG H, et al. Numerical simulation of radial impact on sunflower-like sandwich cylindrical shell [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 054201. doi: 10.11858/gywlxb.20190858 [12] 白江畔, 张新春, 沈振峰, 等. 冲击载荷下多胞元薄壁结构的动态压溃行为研究 [J]. 振动与冲击, 2020, 39(18): 145–152. doi: 10.13465/j.cnki.jvs.2020.18.019BAI J P, ZHANG X C, SHEN Z F, et al. Dynamic crushing behaviors of multi-cell thin-walled structures under out-of-plane impact [J]. Journal of Vibration and Shock, 2020, 39(18): 145–152. doi: 10.13465/j.cnki.jvs.2020.18.019 [13] MOHAMED A S, LABAN O, TARLOCHAN F, et al. Experimental analysis of additively manufactured thin-walled heat-treated circular tubes with slits using AlSi10Mg alloy by quasi-static axial crushing test [J]. Thin-Walled Structures, 2019, 138: 404–414. doi: 10.1016/j.tws.2019.02.022 [14] 杨帆, 王鹏, 范华林, 等. 薄壁管状吸能结构的吸能性能及变形模式的理论研究进展 [J]. 力学季刊, 2018, 39(4): 663–680. doi: 10.15959/j.cnki.0254-0053.2018.04.001YANG F, WANG P, FAN H L, et al. Review of theoretical models on the energy absorption and deformation modes of the thin-walled tubular structures [J]. Chinese Quarterly of Mechanics, 2018, 39(4): 663–680. doi: 10.15959/j.cnki.0254-0053.2018.04.001