木贼属植物仿生薄壁结构的耐撞性优化

刘飞明 雷建银 乔力 刘志芳

刘飞明, 雷建银, 乔力, 刘志芳. 木贼属植物仿生薄壁结构的耐撞性优化[J]. 高压物理学报, 2022, 36(5): 054205. doi: 10.11858/gywlxb.20220516
引用本文: 刘飞明, 雷建银, 乔力, 刘志芳. 木贼属植物仿生薄壁结构的耐撞性优化[J]. 高压物理学报, 2022, 36(5): 054205. doi: 10.11858/gywlxb.20220516
LIU Feiming, LEI Jianyin, QIAO Li, LIU Zhifang. Crashworthiness Optimization of Horsetail-Bionic Thin-Walled Structures[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054205. doi: 10.11858/gywlxb.20220516
Citation: LIU Feiming, LEI Jianyin, QIAO Li, LIU Zhifang. Crashworthiness Optimization of Horsetail-Bionic Thin-Walled Structures[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054205. doi: 10.11858/gywlxb.20220516

木贼属植物仿生薄壁结构的耐撞性优化

doi: 10.11858/gywlxb.20220516
基金项目: 国家自然科学基金(11902215, 11772216)
详细信息
    作者简介:

    刘飞明(1995-),男,硕士研究生,主要从事薄壁结构的耐撞性研究. E-mail:1637752941@qq.com

    通讯作者:

    雷建银(1989-),男,博士,副教授,主要从事仿生结构的力学行为研究.E-mail:leijianyin@tyut.edu.cn

  • 中图分类号: O341

Crashworthiness Optimization of Horsetail-Bionic Thin-Walled Structures

  • 摘要: 利用ABAQUS有限元软件构建木贼属植物仿生薄壁结构(horsetail-bionic thin-walled structure,HBTS)在侧向冲击下的数值模型,分析了结构的壁厚、内径和肋骨数对其耐撞性能和变形模态的影响。结果表明:肋骨数和整体壁厚的增加会明显提高HBTS的比吸能和最大峰值载荷,HBTS不同部分的壁厚变化显著影响其变形模态和耐撞性能。为了综合考虑HBTS各部分的壁厚、肋骨数、内径5个参数对耐撞性能的影响,集成modeFRONTIER优化软件与ABAQUS软件,通过参数化建模在设计空间上构建有限元模型,建立比吸能和最大峰值载荷的Kriging代理模型。使用基于Kriging代理模型的多目标优化方法获取Pareto前沿,以同时实现比吸能最大化和峰值载荷最小化。最后分析了Pareto前沿面上各HBTS的设计参数分布情况,并验证了优化结果,该方法可为薄壁结构的优化设计提供新思路。

     

  • 图  3种木贼属植物:(a)沼泽问荆,(b)野生问荆,(c)斑纹木贼[11]

    Figure  1.  Three horsetails: (a) Marsh horsetail, (b) field horsetail and (c) variegated horsetail[11]

    图  模型的载荷条件(a)和横截面(b)

    Figure  2.  Load condition (a) and cross section (b) of the model

    图  网格收敛结果:(a)载荷-位移曲线, (b)吸能量和计算时间

    Figure  3.  Mesh convergence results: (a) load-displacement curves, (b) energy absorption and computation time

    图  实验[14]与有限元模拟的比较:(a) 变形模态,(b) 载荷-位移曲线

    Figure  4.  Comparison between experiment[14] and finite element simulation: (a) deformation mode, (b) load-displacement curves

    图  ndt$S_{ \text{EA}}$的影响

    Figure  5.  Effects of n, d and t on $S_{ \text{EA}}$

    图  ndt$C_{\text{FE}}$的影响

    Figure  7.  Effects of n, d and t on $C_{\text{FE}}$

    图  ndt$F_{\text{max}}$的影响

    Figure  6.  Effects of n, d and t on $F_{\text{max}}$

    图  不同壁厚下HBTS的变形模态

    Figure  8.  Deformation modes of HBTS with different wall thicknesses

    图  多目标优化流程图

    Figure  9.  Multi-objective optimization flow chart

    图  10  SEAFmax的Pareto前沿

    Figure  10.  Pareto front of SEA and Fmax

    图  11  Pareto前沿面上各HBTS的参数分布:(a) 壁厚分布,(b) 内径和肋骨数分布

    Figure  11.  Parameter distribution of each structure on the Pareto front:(a) distribution of wall thickness, (b) distributions of inner diameter and number of ribs

    图  12  不同${{F}}_{\text{max}}$限制下最优HBTS的载荷-位移曲线

    Figure  12.  Load-displacement curves of optimal HBTSs with different ${{F}}_{\text{max}}$ limits

    表  1  铝合金AA6061的材料参数

    Table  1.   Parameters of aluminum alloy AA6061

    Density/(g∙cm−3)Poisson’s ratioElastic modulus/GPaYield stress/MPaUltimate strength/MPa
    2.700.370.0137.03223.53
    下载: 导出CSV

    表  2  HBTS的耐撞性比较

    Table  2.   Comparison of crashworthiness of HBTS

    Structure${ {t} }{_{\text{R} }}$/mm${ {t} }{_{\text{I} }}$/mm${ {t} }{_{\text{r} }}$/mmM/g${ {E} }{_{\text{A} }}$/J${ {S} }{_{ \text{EA} } }$/(J∙g−1)${ {F} }{_{\text{max} }}$/kN${ {C} }{_{\text{FE} }}$/%
    a0.8000.1000.100110.270.160.6371.84182.8
    b0.1580.8000.158110.228.020.2541.12554.1
    c0.2710.2710.800110.249.110.4461.40176.2
    d1.5000.8000.800308.1361.611.1749.09586.4
    e0.8581.5000.858308.1390.851.2689.69187.7
    f0.9710.9711.500308.1315.821.0258.11084.7
    下载: 导出CSV

    表  3  壁厚与内径水平

    Table  3.   Wall thickness and inner diameter level

    Level${ {t} }{_{\mathrm{R} }}$/mm${ {t} }{_{\text{I} }}$/mm${ {t} }{_{\text{r} }}$/mmd/mm
    10.100.100.1010.0
    20.450.450.4517.5
    30.800.800.8025.0
    41.151.151.1532.5
    51.501.501.5040.0
    下载: 导出CSV

    表  4  Kriging代理模型精度

    Table  4.   Accuracy assessment of the Kriging surrogate models

    ${ {S} }{_{ \text{EA} } }$ ${ {F} }{_{\text{max} } }$
    ${ {R} }{^{\text{2} }}$δARE/%δRAAE/%${ {R} }{^{\text{2} }}$δARE/%δRAAE/%
    0.9891.521.33 0.9961.680.67
    下载: 导出CSV

    表  5  不同$F_{\text{max}}$限制下的最优HBTS

    Table  5.   Optimal HBTSs with different $F_{\text{max}}$ limits

    TypeDesign parameters ${ {S} }{_{ \text{EA} } }$/(J∙g−1) $\delta_{S_{\rm EA}} $/% ${ {F} }{_{\text{max} }}$/(J∙g−1) $\delta_{F_{\max}}$/%
    ${ {t} }{_{\text{R} }}$/mm${ {t} }{_{\text{I} } }$/mm${ {t} }{_{\text{r} } }$/mmnd/mmKrigingFEKrigingFE
    ${ {F} }{_{\text{max} }}$<5 kN0.7590.4130.7751613.9 1.0541.0262.734.9944.9530.83
    ${ {F} }{_{\text{max} } }$<10 kN0.9541.2211.0641631.91.3471.348−0.07 9.95210.111 −1.57
    下载: 导出CSV
  • [1] 武和全, 毛鸿锋, 侯海彬. 复合材料仿竹薄壁管耐撞性和可靠性研究 [J]. 南京理工大学学报, 2017, 41(2): 186–190, 197.

    WU H Q, MAO H F, HOU H B. Study on crashworthiness and reliability of composite bamboo-like thin-walled tube [J]. Journal of Nanjing University of Science and Technology, 2017, 41(2): 186–190, 197.
    [2] ZHAO Z, HUANG W, LI B, et al. Synergistic effects of chiral morphology and reconfiguration in cattail leaves [J]. Journal of Bionic Engineering, 2015, 12(4): 634–642. doi: 10.1016/S1672-6529(14)60153-0
    [3] LIU Q, MA J, HE Z, et al. Energy absorption of bio-inspired multi-cell CFRP and aluminum square tubes [J]. Composites Part B: Engineering, 2017, 121: 134–144. doi: 10.1016/j.compositesb.2017.03.034
    [4] 范晓文, 杨欣, 许述财, 等. 仿骨单位薄壁结构轴向和斜向耐撞性研究 [J]. 载人航天, 2020, 26(2): 142–151. doi: 10.3969/j.issn.1674-5825.2020.02.002

    FAN X W, YANG X, XU S C, et al. Study on crashworthiness of thin-walled structure based on osteon under axial and oblique loads [J]. Manned Spaceflight, 2020, 26(2): 142–151. doi: 10.3969/j.issn.1674-5825.2020.02.002
    [5] TSANG H H, RAZA S. Impact energy absorption of bio-inspired tubular sections with structural hierarchy [J]. Composite Structures, 2018, 195: 199–210. doi: 10.1016/j.compstruct.2018.04.057
    [6] 黄晗, 许述财, 杜雯菁, 等. 基于虾螯结构的仿生薄壁管吸能特性分析及优化 [J]. 北京理工大学学报, 2020, 40(3): 267–274.

    HUANG H, XU S C, DU W J, et al. Energy absorption analysis and optimization of a bionic thin-walled tube based on shrimp chela [J]. Transactions of Beijing Institute of Technology, 2020, 40(3): 267–274.
    [7] 于鹏山, 刘志芳, 李世强. 新型仿竹薄壁圆管的设计与吸能特性分析 [J]. 高压物理学报, 2021, 35(5): 054205. doi: 10.11858/gywlxb.20210710

    YU P S, LIU Z F, LI S Q. Design and energy absorption characteristic analysis of a new bio-bamboo thin-walled circular tube [J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054205. doi: 10.11858/gywlxb.20210710
    [8] HUANG J L, DENG X L, LIU W Y. Bionic design of bend-twist coupled thin-walled beam based on the structure of rice stem [J]. Mechanics of Advanced Materials and Structures, 2021: 1–14.
    [9] 霍鹏, 许述财, 范晓文, 等. 鹿角骨单位仿生薄壁管斜向冲击耐撞性研究 [J]. 爆炸与冲击, 2020, 40(11): 124–135.

    HUO P, XU S C, FAN X W, et al. Oblique impact resistance of a bionic thin-walled tube based on antles osteon [J]. Explosion and Shock Waves, 2020, 40(11): 124–135.
    [10] 白芳华, 张林伟, 白中浩, 等. 基于甲虫鞘翅的客车八边形仿生多胞薄壁管耐撞性研究 [J]. 振动与冲击, 2019, 38(21): 24–30.

    BAI F H, ZHANG L W, BAI Z H, et al. Crashworthiness of coach’s octagonal bionic mult-cell thin-walled tubes based on beetle elytra [J]. Journal of Vibration and Shock, 2019, 38(21): 24–30.
    [11] YIN H F, XIAO Y Y, WEN G L, et al. Crushing analysis and multi-objective optimization design for bionic thin-walled structure [J]. Materials & Design, 2015, 87: 825–834.
    [12] XIAO Y Y, YIN H F, FANG H B, et al. Crashworthiness design of horsetail-bionic thin-walled structures under axial dynamic loading [J]. International Journal of Mechanics and Materials in Design, 2016, 12(4): 563–576. doi: 10.1007/s10999-016-9341-6
    [13] YIN H F, XIAO Y Y, WEN G L, et al. Multi-objective robust optimization of foam-filled bionic thin-walled structures [J]. Thin-Walled Structures, 2016, 109: 332–343. doi: 10.1016/j.tws.2016.10.011
    [14] SUN G Y, TIAN X Y, FANG J G, et al. Dynamical bending analysis and optimization design for functionally graded thickness (FGT) tube [J]. International Journal of Impact Engineering, 2015, 78: 128–137. doi: 10.1016/j.ijimpeng.2014.12.007
    [15] 尹华伟, 王陈凌, 段金曦, 等. 新型薄壁管耐撞性分析及优化设计 [J]. 高压物理学报, 2021, 35(3): 034202. doi: 10.11858/gywlxb.20200624

    YIN H W, WANG C L, DUAN J X, et al. Crashworthiness analysis and optimization design of new thin-walled tube [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034202. doi: 10.11858/gywlxb.20200624
    [16] 郝文乾, 卢进帅, 黄睿, 等. 轴向冲击载荷下薄壁折纹管的屈曲模态与吸能 [J]. 爆炸与冲击, 2015, 35(3): 380–385. doi: 10.11883/1001-1455-(2015)03-0380-06

    HAO W Q, LU J S, HUANG R, et al. Buckling and energy absorption properties of thin-walled corrugated tubes under axial impacting [J]. Explosion and Shock Waves, 2015, 35(3): 380–385. doi: 10.11883/1001-1455-(2015)03-0380-06
    [17] MEGUID S A, ATTIA M S, MONFORT A. On the crush behaviour of ultralight foam-filled structures [J]. Materials & Design, 2004, 25(3): 183–189.
    [18] 穆雪峰, 姚卫星, 余雄庆, 等. 多学科设计优化中常用代理模型的研究 [J]. 计算力学学报, 2005, 22(5): 608–612.

    MU X F, YAO W X, YU X Q, et al. A survey of surrogate models used in MDO [J]. Chinese Journal of Computational Mechanics, 2005, 22(5): 608–612.
    [19] FANG J G, GAO Y K, SUN G Y, et al. Dynamic crashing behavior of new extrudable multi-cell tubes with a functionally graded thickness [J]. International Journal of Mechanical Sciences, 2015, 103: 63–73. doi: 10.1016/j.ijmecsci.2015.08.029
    [20] FU J, LIU Q, LIU-FU K, et al. Design of bionic-bamboo thin-walled structures for energy absorption [J]. Thin-Walled Structures, 2019, 135: 400–413. doi: 10.1016/j.tws.2018.10.003
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  221
  • HTML全文浏览量:  140
  • PDF下载量:  31
出版历程
  • 收稿日期:  2022-02-18
  • 修回日期:  2022-05-20
  • 刊出日期:  2022-10-11

目录

    /

    返回文章
    返回