水滴超高速撞击Whipple防护结构的毁伤特性

赵微 陈利 张庆明 龙仁荣 薛一江 刘文近 孙乔溪

赵微, 陈利, 张庆明, 龙仁荣, 薛一江, 刘文近, 孙乔溪. 水滴超高速撞击Whipple防护结构的毁伤特性[J]. 高压物理学报, 2022, 36(4): 044103. doi: 10.11858/gywlxb.20220515
引用本文: 赵微, 陈利, 张庆明, 龙仁荣, 薛一江, 刘文近, 孙乔溪. 水滴超高速撞击Whipple防护结构的毁伤特性[J]. 高压物理学报, 2022, 36(4): 044103. doi: 10.11858/gywlxb.20220515
ZHAO Wei, CHEN Li, ZHANG Qingming, LONG Renrong, XUE Yijiang, LIU Wenjin, SUN Qiaoxi. Damage Characteristics of Whipple Protective Structure Impacted by Water Droplets at Hypervelocity[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044103. doi: 10.11858/gywlxb.20220515
Citation: ZHAO Wei, CHEN Li, ZHANG Qingming, LONG Renrong, XUE Yijiang, LIU Wenjin, SUN Qiaoxi. Damage Characteristics of Whipple Protective Structure Impacted by Water Droplets at Hypervelocity[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044103. doi: 10.11858/gywlxb.20220515

水滴超高速撞击Whipple防护结构的毁伤特性

doi: 10.11858/gywlxb.20220515
详细信息
    作者简介:

    赵 微(1996-),女,硕士研究生,主要从事超高速冲击动力学研究.E-mail:zw18334729576@163.com

    通讯作者:

    陈 利(1969-),女,硕士,副教授,主要从事冲击动力学研究.E-mail:lichenme@bit.edu.cn

  • 中图分类号: O389; V414.9

Damage Characteristics of Whipple Protective Structure Impacted by Water Droplets at Hypervelocity

  • 摘要: 采用水中泡大的高吸水性材料模拟水滴,开展了常温下直径为3.7和6.4 mm的球形水滴超高速正撞击典型Whipple防护结构(由缓冲板和效应板构成)的实验研究,得到了不同直径的水滴弹丸撞击下双层铝板的毁伤特性。采用LS-DYNA软件的有限元方法-光滑粒子流体动力学(finite element method-smoothed particle hydrodynamics, FEM-SPH)自适应方法对Whipple防护结构在直径为3~7 mm的水滴不同速度撞击下的毁伤特性进行了研究,分析了水滴直径、撞击速度、靶板厚度等因素的影响,给出了2~8 km/s速度范围内水滴超高速撞击铝板的无量纲穿孔直径经验公式,得到了3~7 mm水滴弹丸击穿Whipple防护结构所需的最低速度。

     

  • 图  弹丸及弹托

    Figure  1.  Photographs of projectile and sabot

    图  二级轻气炮结构示意图

    Figure  2.  Structure diagram of two-stage light gas gun

    图  Whipple防护结构实物和示意图

    Figure  3.  Photo and schematic diagram of Whipple shield

    图  缓冲板和效应板的毁伤形貌

    Figure  4.  Damage morphologies of the buffer plates and the bulkheads

    图  水滴撞击铝板的有限元模型(dp=5 mm, tb=1 mm, tw=3 mm)

    Figure  5.  Finite element model of water droplet impacting Whipple shield (dp=5 mm, tb=1 mm, tw=3 mm)

    图  穿孔形貌的实验结果与数值模拟结果的对比

    Figure  6.  Perforation morphology comparison between experiment and numerical simulation

    图  弹靶作用初始阶段冲击波的传播

    Figure  7.  Shock wave propagation at the initial stage of projectile impacting target

    图  不同弹径下穿孔直径随弹丸撞击速度的变化

    Figure  8.  Variations of perforation diameter in versus of projectile velocity for different projectile sizes

    图  不同速度下无量纲穿孔直径随$ {t}_{\mathrm{b}}/{d}_{\mathrm{p}} $的变化

    Figure  9.  Variation of dimensionless perforation diameter with $ {t}_{\mathrm{b}}/{d}_{\mathrm{p}} $ at different velocities

    图  10  不同撞击速度下水滴产生的碎片云形貌(dp=5 mm,tb=1 mm)

    Figure  10.  Debris cloud morphologies generated by water droplet projectile at different velocities (dp=5 mm, tb=1 mm)

    图  11  不同速度下碎片云对效应板的毁伤情况(dp=5mm,tb=1mm)

    Figure  11.  Damage of the effect layer target plate generated by the debris cloud at different projectile velocities (dp=5 mm, tb=1 mm)

    表  1  实验工况及参数

    Table  1.   Experimental conditions and parameters

    No.dp/mmm/mgvp/(km∙s−1)tb/mmtw/mmS/mm
    13.7 29.43.4633100
    26.2138.52.3733100
    下载: 导出CSV

    表  2  2A12铝的Johnson-Cook本构模型和失效模型参数

    Table  2.   Johnson-Cook constitutive and failure model parameters for 2A12 aluminum

    $ \rho $/(g∙cm−3)G/GPaA/MPaB/MPanCm
    2.78527.62902030.350.0111.34
    Tm/KD1D2D3D4D5
    75510000
    下载: 导出CSV

    表  3  2A12铝的Grüneisen状态方程参数

    Table  3.   Grüneisen equation of state parameters for 2A12 aluminum

    $ C $/(m∙s−1)S1S2S3γ0A0E0V0
    53861.34001.97001.0
    下载: 导出CSV

    表  4  水滴的Elastic Plastic Hydro材料模型参数

    Table  4.   Elastic Plastic Hydro material model parameters for water droplets

    $\,\rho$/(g∙cm−3)G/MPaY/MPaEh/MPa
    1.1117.6120.001
    下载: 导出CSV

    表  5  数值模拟获得的穿孔尺寸与实验结果的对比

    Table  5.   Comparison of the perforation aperture size from numerical simulation and experiment

    No.Experiment SimulationError/
    %
    2a/mm2b/mm(a+b)/mmDb/mm
    18.448.218.33 8.927.1
    213.5911.9312.7613.3812.0
    下载: 导出CSV

    表  6  不同直径的水滴弹丸穿透Whipple结构的临界速度

    Table  6.   Critical velocities of water droplet projectiles with different diameters for penetrating Whipple structure

    $ {d}_{\mathrm{p}} $/mm$ {v}_{\mathrm{p}0} $/(km·s−1) $ {d}_{\mathrm{p}} $/mm$ {v}_{\mathrm{p}0} $/(km·s−1)
    37.065.0
    46.5 74.0
    55.8
    下载: 导出CSV
  • [1] 闵桂荣, 肖名鑫. 防止微流星击穿航天器舱壁的可靠性设计 [J]. 中国空间科学技术, 1986(6): 45–51.

    MIN G R, XIAO M X. The reliability design to prevent meteors from penetrating spacecraft bulkhead [J]. Chinese Space Science and Technology, 1986(6): 45–51.
    [2] 姜东升, 郑世贵, 马宁, 等. 空间碎片和微流星对卫星太阳翼的撞击损伤及防护研究 [J]. 航天器工程, 2017, 26(2): 114–120. doi: 10.3969/j.issn.1673-8748.2017.02.016

    JIANG D S, ZHENG S G, MA N, et al. Study of space debris and meteoroid impact effects on spacecraft solar array [J]. Spacecraft Engineering, 2017, 26(2): 114–120. doi: 10.3969/j.issn.1673-8748.2017.02.016
    [3] 李明, 龚自正, 刘国青. 空间碎片监测移除前沿技术与系统发展 [J]. 科学通报, 2018, 63(25): 2570–2591. doi: 10.1360/N972017-00880

    LI M, GONG Z Z, LIU G Q. Frontier technology and system development of space debris surveillance and active removal [J]. Chinese Science Bulletin, 2018, 63(25): 2570–2591. doi: 10.1360/N972017-00880
    [4] MARCHI S, DURD D D, POLANSKEY C A, et al. Hypervelocity impact experiments in iron-nickel ingots and iron meteorites: implications for the NASA psyche mission [J]. Journal of Geophysical Research: Planets, 2020, 125(2): e2019JE005927.
    [5] 刘先应, 盖芳芳, 李志强, 等. 锥形弹丸超高速撞击防护屏的碎片云特性参数研究 [J]. 高压物理学报, 2016, 30(3): 249–257. doi: 10.11858/gywlxb.2016.03.011

    LIU X Y, GAI F F, LI Z Q, et al. Characteristic parameters of debris cloud produced by hypervelocity impact of conical projectiles on spacecraft shield [J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 249–257. doi: 10.11858/gywlxb.2016.03.011
    [6] 廖高健, 陈勇, 刘西, 等. 多孔火山岩超高速撞击蜂窝夹层板试验研究 [J]. 振动与冲击, 2018, 37(24): 1–6.

    LIAO G J, CHEN Y, LIU X, et al. An experimental investigation of porous volcano rock hypervelocity impact on honeycomb sandwich panels [J]. Journal of Vibration and Shock, 2018, 37(24): 1–6.
    [7] 李斌. 轻质脆性弹丸作用下的防护结构超高速撞击特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2010.

    LI B. The research on characteristics of shield structure under light brittle projectile hypervelocity impact [D]. Harbin: Harbin Institute of Technology, 2010.
    [8] 朱凼凼. 微流星体高速撞击航天器防护结构地面模拟实验研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012.

    ZHU D D. Research on ground simulation experiment of micrometeoroid high-speed impaction on spacecraft shield [D]. Harbin: Harbin Institute of Technology, 2012.
    [9] PONIAEV S A, KURAKIN R O, SEDOV A I, et al. Hypervelocity impact of mm-size plastic projectile on thin aluminum plate [J]. Acta Astronautica, 2017, 135: 26–33. doi: 10.1016/j.actaastro.2016.11.011
    [10] 单立, 郑世贵, 闫军. 冰粒超高速撞击蜂窝板的数值模拟研究 [J]. 实验流体力学, 2014, 28(3): 98−103.

    SHAN L, ZHENG S G, YAN J. Numerical simulation of honeycomb sandwich panel under hypervelocity impact of ice particle [J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3): 98−103.
    [11] YUAN Q Z, ZHAO Y P. Hypervelocity impact of the icy droplet on al shell at nanoscale: a molecular dynamics probe [J]. Journal of Ningbo University (NSEE), 2012, 25(1): 94–97.
    [12] 王俊儒. 冰弹撞击CFRP复合材料的毁伤特性研究 [D]. 沈阳: 沈阳理工大学, 2020.

    WANG J R. Study on the damage characteristics of CFRP composites impacted by ice projectile [D]. Shenyang: Shenyang Ligong University, 2020.
    [13] 谭晓军, 冯晓伟, 胡艳辉, 等. 层状结构冰球的高速撞击特性实验 [J]. 爆炸与冲击, 2020, 40(11): 113301. doi: 10.11883/bzycj-2020-0047

    TAN X J, FENG X W, HU Y H, et al. Experimental investigation on characteristics of layered ice spheres under high-velocity impact [J]. Explosion and Shock Waves, 2020, 40(11): 113301. doi: 10.11883/bzycj-2020-0047
    [14] 陈海波. 微流星体模拟材料超高速撞击航天器结构损伤特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011.

    CHEN H B. Damage characteristics of micro-meteoroid imitation matrial hypervelocity impacting on the spacecraft [D]. Harbin: Harbin Institute of Technology, 2011.
    [15] PEREIRA J M, PADULA S A, REVILOCK D M, et al. Forces generated by high velocity impact of ice on a rigid structure: TM-2006-214263 [R]. Cleveland: NASA, 2006.
    [16] TIPPMANN J D, KIM H, RHYMER J D. Experimentally validated strain rate dependent material model for spherical ice impact simulation [J]. International Journal of Impact Engineering, 2013, 57: 43–54. doi: 10.1016/j.ijimpeng.2013.01.013
    [17] BOTTKE W F, WALKER R J, DAY J, et al. The delivery of water to the lunar mantle by late planetesimal accretion (invited) [C]//AGU Fall Meeting Abstracts. Washington: AGU, 2010.
    [18] DALY R T, SCHULTZ P H. The delivery of water by impacts from planetary accretion to present [J]. Science Advances, 2018, 4(4): eaar2632. doi: 10.1126/sciadv.aar2632
    [19] 马文来, 张伟, 管公顺, 等. 椭球弹丸超高速撞击防护屏碎片云数值模拟 [J]. 材料科学与工艺, 2005, 13(3): 294–298. doi: 10.3969/j.issn.1005-0299.2005.03.021

    MA W L, ZHANG W, GUAN G S, et al. Numerical simulation of debris cloud produced by ellipsoidal projectile hypervelocity impact on bumper [J]. Materials Science and Technology, 2005, 13(3): 294–298. doi: 10.3969/j.issn.1005-0299.2005.03.021
    [20] 郑伟, 庞宝君, 彭科科, 等. 超高速正撞击溅射物实验与仿真研究 [J]. 高压物理学报, 2012, 26(6): 621–626. doi: 10.11858/gywlxb.2012.06.004

    ZHENG W, PANG B J, PENG K K, et al. Hypervelocity impact experiment and simulation for ejecta [J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 621–626. doi: 10.11858/gywlxb.2012.06.004
    [21] HE Q G, CHEN X W, CHEN J F. Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud [J]. Acta Astronautica, 2020, 175: 99–117. doi: 10.1016/j.actaastro.2020.05.056
    [22] 陈莹, 陈小伟. 改进的Whipple防护结构与相关数值模拟方法研究进展 [J]. 爆炸与冲击, 2021, 41(2): 30–56.

    CHEN Y, CHEN X W. A review on the improved Whipple shield and related numerical simulations [J]. Explosion and Shock Waves, 2021, 41(2): 30–56.
    [23] 谈庆明. 量纲分析 [M]. 合肥: 中国科学技术大学出版社, 2005.

    TAN Q M. Dimensional analysis [M]. Hefei: University of Science and Technology of China Press, 2005.
    [24] 管公顺. 航天器空间碎片防护结构超高速撞击特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2006.

    GUAN G S. Hypervelocity impact characteristic investigation of spacecraft space debris shield configuration [D]. Harbin: Harbin Institute of Technology, 2006.
    [25] 武强, 张庆明, 龙仁荣, 等. 含能材料防护屏在球形弹丸超高速撞击下的穿孔特性研究 [J]. 兵工学报, 2017, 38(11): 2126–2133. doi: 10.3969/j.issn.1000-1093.2017.11.007

    WU Q, ZHANG Q M, LONG R R, et al. Perforation characteristics of energetic material shield induced by hypervelocity impact of spherical projectile [J]. Acta Armamentarii, 2017, 38(11): 2126–2133. doi: 10.3969/j.issn.1000-1093.2017.11.007
    [26] 才源, 庞宝君, 迟润强, 等. 高压气体对靶板穿孔及其碎片云运动和致损效应影响研究 [J]. 振动与冲击, 2019, 38(19): 31–37.

    CAI Y, PANG B J, CHI R Q, et al. Influences of high pressure gas on target perforation and its debris cloud motion and damage effect [J]. Journal of Vibration and Shock, 2019, 38(19): 31–37.
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  173
  • PDF下载量:  52
出版历程
  • 收稿日期:  2022-02-17
  • 修回日期:  2022-03-02
  • 录用日期:  2022-03-02
  • 网络出版日期:  2022-07-21
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回