摩擦界面波动效应的数值模拟

刘永贵 惠蒙蒙 沈玲燕

刘永贵, 惠蒙蒙, 沈玲燕. 摩擦界面波动效应的数值模拟[J]. 高压物理学报, 2022, 36(5): 052301. doi: 10.11858/gywlxb.20220513
引用本文: 刘永贵, 惠蒙蒙, 沈玲燕. 摩擦界面波动效应的数值模拟[J]. 高压物理学报, 2022, 36(5): 052301. doi: 10.11858/gywlxb.20220513
XU Tiancheng, DENG Yuanhao, HONG Chen, HUANG Haijun, XU Feng. Pressure Distribution Investigation in Silicon Oil Compressed in Diamond Anvil Cell[J]. Chinese Journal of High Pressure Physics, 2025, 39(3): 031101. doi: 10.11858/gywlxb.20240860
Citation: LIU Yonggui, HUI Mengmeng, SHEN Lingyan. Numerical Study on Wave Effect of the Frictional Interface[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 052301. doi: 10.11858/gywlxb.20220513

摩擦界面波动效应的数值模拟

doi: 10.11858/gywlxb.20220513
基金项目: 河南省高校基本科研业务费(NSFRF210322)
详细信息
    作者简介:

    刘永贵(1982-),男,博士,讲师,主要从事波动力学研究. E-mail:liuyongg@hpu.edu.cn

    通讯作者:

    沈玲燕(1984-),女,博士,讲师,主要从事冲击动力学研究. E-mail:lyshen@hpu.edu.cn

  • 中图分类号: O346

Numerical Study on Wave Effect of the Frictional Interface

  • 摘要: 界面摩擦是一种普遍的自然现象。基于摩擦的界面微接触断裂机制,采用线弹性本构关系和D-P破坏准则,建立了包含三角形微凸起的二维界面摩擦模型,采用有限元分析对入射波和摩擦界面的相互作用进行数值模拟。结果表明:在主动加载的微过程中,界面存在显著的应力波动及精细结构特征,波阵面在界面近区域内的演化具有对称扩散性,应力扰动作用于界面微凸起可诱发其断裂,从而以断裂面为中心形成纵波、横波和界面波结构。一个有趣的现象是,在加载的瞬间,界面几乎同步产生了微应力扰动,以纵波形式向基体内传播,更多比较算例和分析证实该扰动产生的物理机制同作用在界面的整体重力微调整有关。该工作揭示了摩擦早期的界面波动效应及其微断裂机制,有望为地震预测提供新的有效途径,从而实现将地震预测时间提前。

     

  • 破片式战斗部爆炸后,会形成破片和冲击波两种毁伤元。在战斗部爆炸初始时刻,炸药爆炸产生的高温高压气体急剧膨胀,使壳体碎裂,爆轰产物溢出,破片在爆轰产物的作用下由静止状态逐渐加速到最大初速。在爆炸后一段时间内,冲击波运动在破片之前,随着运动距离的增加,冲击波速度衰减,破片运动在冲击波之前。因此,在破片和冲击波运动过程中,存在一个相遇位置。而在相遇位置前后,破片和冲击波作用于目标的顺序不同,对目标的毁伤效果也不相同。因此,对破片和冲击波相遇位置的研究具有重要的意义。针对破片和冲击波在空气中的传播特性,相关学者进行了大量研究[1-5]。刘刚[6]采用ANSYS/LS-DYNA非线性软件对破片式战斗部的爆炸过程进行了数值计算,得到破片和冲击波在12.6倍装药直径处相遇;梁为民等[7]对破片式战斗部爆炸后破片和冲击波的运动过程进行了理论推导,分析了不同比例距离和装填系数下,破片与冲击波的运动规律,并通过试验得到了破片与冲击波的相遇位置,约为装药半径的19.3倍;Grisaro[8]、Nyström[9]等用理论计算的方法对破片和冲击波相遇位置进行了研究。目前,对破片式战斗部爆炸后破片和冲击波相遇位置的研究主要是通过理论计算和数值仿真的方法,通过试验的方法对破片和冲击波相遇位置的研究较少。

    针对当前研究的不足,设计了一个破片式战斗部,对破片和冲击波相遇位置进行了数值计算,并设计了一种测量破片和冲击波相遇位置的试验方法,在此基础上分析了战斗部的炸药装填系数、破片质量、爆热和爆速等因素对破片和冲击波相遇位置的影响规律。

    为研究破片和冲击波的相遇位置,设计了一个破片式战斗部,其结构如图 1所示。其外部是环形的预制破片层,中间为铝合金壳体,内部装填1 kg的8701炸药;战斗部长度L为160 mm,装药半径R为31.3 mm,破片层厚度t为5.5 mm,单枚破片高h为8 mm,破片材料为钢,单枚破片质量为3.3 g,破片数目为480枚。

    图  1  战斗部结构示意图
    Figure  1.  Schematic structure of the warhead

    采用ANSYS/LS-DYNA对战斗部爆炸后毁伤元形成过程进行了数值计算。建立了如图 2所示的1/2数值计算模型,该模型由炸药、壳体、破片和空气域组成。空气域整体尺寸为300 cm×300 cm×1200 cm,网格大小为4 mm[1]。破片、壳体采用Lagrange网格, 炸药和空气采用Euler网格,使用多物质单元ALE算法。采用关键字*CONSTRAINED_LAGRANGE_IN_SOLID定义Lagrange网格和空气网格间的耦合算法,采用中心点火的方式起爆战斗部,在模型的对称面设置对称边界条件,空气域边界采用透射边界。网格单元类型均为八节点六面体SOLID164实体单元,采用g-cm-μs单位制。

    图  2  战斗部三维计算模型(局部)
    Figure  2.  Three-dimensional finite element model of the warhead (part)

    战斗部壳体材料采用Johnson_Cook模型和Grüneisen状态方程描述,破片材料采用弹塑性Plastic_Kinematic本构模型,材料主要参数见表 1[10]。用High_Explosive_Burn本构模型和JWL状态方程描述炸药,空气材料采用Null材料模型和Linear_Polynomial状态方程描述,材料主要参数分别见表 2表 3[11]

    表  1  壳体和破片的主要材料参数表
    Table  1.  Material parameters of shell and fragments
    Material ρ/(kg·m-3) E/GPa μ A/MPa B/MPa n m c/(m·s-1) S1 γ
    Alloy 2797 69.63 0.33 265 426 0.34 1 5280 1.4 2
    Steel 7850 210 0.28 335
    下载: 导出CSV 
    | 显示表格
    表  2  炸药材料参数及状态方程参数
    Table  2.  Material and equation of state (EOS) parameters for explosive
    ρ/(kg·m-3) D/(m·s-1) A/GPa B/GPa R1 R2 ω pCJ/GPa V0
    1780 8390 581.4 6.8 4.1 1 0.35 34 1
    下载: 导出CSV 
    | 显示表格
    表  3  空气材料参数及状态方程参数
    Table  3.  Material and equation of state (EOS) parameters for air
    ρ/(kg·m-3) C0/MPa C1 C2 C3 C4 C5 C6 V e0/MPa
    1.25 -0.1 0 0 0 0.4 0.4 0 1 0.25
    下载: 导出CSV 
    | 显示表格

    战斗部爆炸后破片和冲击波形成过程如图 3所示,战斗部装药爆炸后,壳体及破片在高温高压的爆轰产物下膨胀,最后破裂,泄露的气体产物压缩周围空气形成冲击波。由图 3可知,柱形装药爆炸后产生的冲击波传播一段距离后,冲击波波阵面近似以球面波的形式向四周传播。在爆炸初始时刻,冲击波速度高于破片速度,所以在425 μs之前冲击波运动在破片之前;随着运动距离的增加,冲击波的强度衰减很快,相应的传播速度也逐渐降低,而破片的速度衰减相对冲击波较慢,所以运动一段时间后,在425 μs时刻破片追赶上冲击波和其相遇;在425 μs之后,破片超过冲击波,运动在冲击波之前。

    图  3  不同时刻破片和冲击波相对位置
    Figure  3.  Relative locations of fragments and blast wave for different time instants

    图 4为起爆点对应的中间层破片和冲击波波阵面前沿运动距离RC随时间的变化曲线。由图 4可知:在所计算的时间范围内破片的运动距离随时间近似线性增加,即速度变化不大;而冲击波运动距离的增量随时间的增加逐渐变缓,表明冲击波的运动速度逐渐降低。在425 μs时,破片和冲击波相遇,相遇点距起爆点0.72 m处(约为11.5倍装药直径),在此位置之前,破片运动在冲击波之后;在此位置之后,破片运动在冲击波之前,随后两者之间的距离差逐渐增大。

    图  4  传播距离随时间的变化(数值计算)
    Figure  4.  Variation of propagation distances with time (Numerical computation)

    为了研究破片式战斗部爆炸后破片和冲击波的相遇位置,设计了一种测量相遇位置的试验方法。试验现场布置及试验原理如图 5所示,试验中使用图 1所示的战斗部,在平行于战斗部轴线不同位置处放置5块硬质木块(24 mm×54 mm×240 mm),战斗部起爆后,通过高速录像记录木块的倾斜状态,当冲击波到达木块时,木块会发生倾斜,以此时刻作为冲击波到达对应位置处的时间, 每发试验木块距战斗部的距离如表 4所示。在木块后面布置一块白色背景布,便于高速摄像机捕捉目标位置;在距战斗部一定距离处设置测速靶,用于测量战斗部爆炸后破片的速度;木块、测速靶和战斗部的中心保持在同一平面上。

    图  5  试验装置及布置示意图
    Figure  5.  Photograph of experimental setup and the arrangement of test devices
    表  4  木块距战斗部距离
    Table  4.  Distance between wood blocks and warhead
    Shot Distance/m
    Wood block 1 Wood block 2 Wood block 3 Wood block 4 Wood block 5
    1 0.4 0.6 1.2 1.6 2.0
    2 1.6 2.0 2.4 2.8 3.2
    3 1.6 2.0 2.8 3.2 3.6
    下载: 导出CSV 
    | 显示表格

    距离战斗部起爆点分别为2.5、4.3、6.2、8.0和10.0 m处的地面上分别布置kistler 211B4压电传感器,用于测量不同距离处冲击波超压,现场布置和试验原理如图 6所示。

    图  6  冲击波超压测试现场布置图
    Figure  6.  Schematic diagram of experimental setup for blast wave overpressure measurement

    采用中心起爆的方式起爆战斗部,在战斗部壳体上缠绕细铜丝,当战斗部爆炸壳体碎裂时,铜丝断裂,作为高速录像和压电传感器的启动零时刻。高速录像的帧数为24000帧每秒。

    共进行了3发试验,图 7为高速录像记录的第2发试验中破片和冲击波典型时刻的运动过程。如图 7(c)所示,第1块木块开始倾斜,以1.791 ms作为冲击波达到第1块木块的时间;如图 7(d)所示,第2块木块发生倾斜,以2.334 ms作为冲击波到达第2块木块的时间。试验之后的木块如图 8所示,由图 8可知,木块表面没有被破片击中的痕迹,表明木块是在冲击波的作用下发生了移动,排除了木块是因为破片击中而发生移动的可能性。

    图  7  破片和冲击波运动过程图
    Figure  7.  Relative locations of fragments and blast wave
    图  8  试验后木块照片
    Figure  8.  Wood blocks photo after test
    2.3.1   破片和冲击波相遇位置

    3发试验中,测速靶测得破片的平均速度为1600 m/s。冲击波到达各个测点的时间如表 5所示,由于战斗部爆炸后火光太强,部分试验数据无法获得。将每发试验距战斗部相同位置处测得的试验数据取平均值,得到距战斗部不同位置处冲击波到达时间,如表 6所示。

    表  5  冲击波到达时间
    Table  5.  Arrival time of blast wave
    Shot Time/ms
    Wood block 1 Wood block 2 Wood block 3 Wood block 4 Wood block 5
    1 0.752 1.832 2.586
    2 1.791 2.334 3.009 3.825 4.771
    3 2.876 3.762 4.689
    下载: 导出CSV 
    | 显示表格
    表  6  冲击波到达平均时间
    Table  6.  Average arrival time of blast wave
    Distance/m Time/ms
    1.2 0.752
    1.6 1.812
    2.0 2.599
    2.4 3.009
    2.8 3.794
    3.2 4.730
    下载: 导出CSV 
    | 显示表格

    根据冲击波到达不同距离处的时间,使用幂函数对冲击波传播距离随时间的变化进行拟合[11],由于破片在短时间内速度衰减不明显, 所以破片速度近似取1600 m/s,破片和冲击波运动距离随时间的变化曲线如图 9所示,由图可知破片和冲击波在465 μs时相遇,相遇点距战斗部爆炸中心0.76 m(约为12.14倍装药直径),数值计算得到的相遇距离与试验测得的相遇距离相比,误差为5.26%。

    图  9  传播距离随时间的变化(试验)
    Figure  9.  Variation of propagation distances with time (Test)
    2.3.2   冲击波超压值

    在1.3节中对毁伤元形成过程进行了数值计算,图 10是数值计算中对应的测点处冲击波超压随时间的变化曲线。由图 10可知,随着冲击波传播距离的增加,冲击波超压峰值急剧降低,超压作用时间增加。表 7显示地面5个测点的冲击波超压峰值的3次试验平均值和数值计算的对比结果,误差均在9.05%以下,说明该数值计算具有一定的合理性。在此基础上,下文以相同的数值计算方法,计算研究战斗部装填系数、破片质量、爆热和爆速对破片和冲击波相遇位置的影响。

    图  10  不同点处超压-时间曲线
    Figure  10.  Shock wave overpressure versus time at different locations
    表  7  计算超压值与试验超压值对比
    Table  7.  Comparison of the numerical and experimental overpressure results
    Distance/m Over pressure/MPa Error/%
    Test Numerical
    2.5 0.356 0.3557 8.43
    4.3 0.086 0.0912 6.05
    6.2 0.04565 0.0489 7.12
    8.0 0.0256 0.0241 5.86
    10.0 0.0199 0.0217 9.05
    下载: 导出CSV 
    | 显示表格

    为了研究战斗部结构参数对破片和冲击波相遇位置的影响规律,改变图 1中战斗部的结构参数,战斗部结构参数和计算方案设计如表 8所示。方案1、方案2和方案3分别研究装填系数k、破片质量m、炸药类型对破片和冲击波相遇位置的影响。

    表  8  战斗部及破片参数(L=260 mm,R=96 mm)
    Table  8.  Parameters of warhead and fragment (L=260 mm, R=96 mm)
    Arrangement k/% m/g t/mm h/mm Explosive
    37.31 6.00 9 10 8701
    1 40.33 6.00 8 10 8701
    43.73 6.00 7 10 8701
    52.34 2.12 5 4 8701
    52.34 4.24 5 6 8701
    2 52.34 6.00 5 8.2 8701
    52.34 8.48 5 9.6 8701
    52.34 12.00 5 12 8701
    3 6.00 5 8.2 8701/TNT/B/HMX
    下载: 导出CSV 
    | 显示表格

    不同装填系数下战斗部爆炸后形成的破片和冲击波相遇位置的关系曲线如图 11所示。由曲线可以看出,随着炸药装填系数的增加,冲击波和破片的相遇位置距爆炸中心的距离越小。这主要是因为装填系数增大时,爆炸后破片的初速也提高,虽然冲击波的速度也随着装填系数的增加而增加,但是在空气中破片速度的衰减幅度比冲击波的衰减幅度小,所以破片在距爆炸中心更近的距离内赶上了冲击波波阵面。

    图  11  装填系数k对相遇位置的影响
    Figure  11.  Influence of k on meeting location

    破片质量的变化对破片和冲击波相遇位置的影响如图 12所示。由图可知,随着单枚破片质量的增大,破片和冲击波的相遇位置距爆炸中心的距离减小;因为单枚破片质量增大,其抗速度衰减的能力增强,追上冲击波的距离缩短,所以破片和冲击波的相遇位置距爆炸中心的距离随单枚破片质量的增大而减小。

    图  12  单枚破片质量对相遇位置的影响
    Figure  12.  Influence of fragment mass on meeting location

    但随着破片质量的提高,相遇位置距爆炸中心的距离减小幅度很小,破片质量平均增加1倍,相遇位置距爆炸中心的距离减小2.4%,表明破片质量对相遇位置的影响程度很小。这主要是因为在战斗部爆炸后,在较短时间内破片在空气中的速度衰减幅度较低,而质量差别不大的破片在空气中的速度衰减幅度差别不大,所以破片质量对破片和冲击波相遇位置的影响不大。

    方案3中,战斗部结构参数不变,只改变装药类型,战斗部装药类型的差异主要体现在装药爆热及爆速上。为方便数值计算,将不同类型的炸药装药均转换为TNT当量质量WTWT的计算公式为

    WT=WiQTiQTTNT
    (1)

    式中:Wi为该炸药质量,单位kg;QTi为该炸药爆热,单位J/kg,QTTNT为TNT的爆热。不同类型炸药的相关参数与TNT当量如表 9所示[4]

    表  9  不同类型炸药的相关参数
    Table  9.  Parameters of different explosives
    Explosive ρ/(kg·m-3) QV/(m·s-1) QT/(J·g-1) Explosive mass/kg TNT equivalent k/%
    TNT 1.58 6856 4225 11.00 1.00 44.51
    B 1.71 7680 4690 12.37 1.11 50.05
    8701 1.72 7980 5300 11.95 1.25 52.34
    HMX 1.89 9100 6188 13.13 1.46 58.30
    下载: 导出CSV 
    | 显示表格

    根据TNT当量质量计算了装填系数对破片和冲击波的相遇位置的影响结果,如图 13所示。炸药的爆热、爆速增大时,破片和冲击波的相遇位置距爆炸中心的距离减小。主要原因为:一方面,战斗部装药爆热的增加,其装药等效的TNT当量也增加,进而炸药的装填系数也增加,所以,装药爆热对破片和冲击波相遇位置的影响规律和装填系数对相遇位置的影响相同;另外,由计算破片初速的格林公式可知,格林常数与炸药的爆速有关,且近似呈线性变化。炸药的爆速越高,格林常数越大,破片的初始速度越高,破片追上冲击波波阵面的距离缩短。

    图  13  不同炸药类型对相遇位置的影响
    Figure  13.  Influence of different types of explosives on meeting location

    通过数值计算和试验的方法,对破片和冲击波的相遇位置进行了研究,分析了破片和冲击波相遇位置的影响因素及其影响规律。

    (1) 采用木块测量冲击波传播距离和测速靶测破片初速的试验方法,可以有效地测量破片和冲击波的相遇位置。

    (2) 破片和冲击波相遇位置随炸药装填系数的增加而减小,装填系数增加31%,相遇点距爆炸中心的距离减小11.5%。

    (3) 装填系数相同的情况下,单枚破片的质量越大,破片和冲击波的相遇位置距爆炸中心的距离减小;破片质量增加1倍,相遇距离减小2.4%,可见破片质量的变化对相遇位置的影响较小。

    (4) 炸药的爆热、爆速越大,破片和冲击波的相遇位置距爆炸中心的距离越小。

  • 图  摩擦界面模型

    Figure  1.  Friction interface model

    图  Part-1上界面单元的波动特征

    Figure  2.  Wave structure of interface elements at Part-1

    图  Part-2下界面单元的波动特征

    Figure  3.  Wave structure of interface at Part-2

    图  应力波的传播及演化

    Figure  4.  Propagation pattern of stress wave in space-time

    图  微凸起的断裂过程云图

    Figure  5.  Stress nephogram of micro bulge fracture process

    图  微凸起断裂的波动效应

    Figure  6.  Wave effect induced by micro bulge fracture

    图  微凸起正上方单元的应力扰动

    Figure  7.  Stress disturbance of elements directly above the micro bulge

    图  基于特征线理论的波结构

    Figure  8.  Wave structure based on characteristic line theory

    图  t=0.315 μs时3个应力扰动的波阵面形状

    Figure  9.  Wave fronts of three stress disturbances (t=0.315 μs)

    图  10  σ22波的精细结构

    Figure  10.  Fine structure of σ22 wave

    图  11  界面性能对新纵波扰动的影响

    Figure  11.  Effect of frictional interface properties

    图  12  界面新纵波扰动的形成机制

    Figure  12.  Mechanism of interfacial longitudinal wave

    图  13  地震波结构模拟

    Figure  13.  Simulation of seismic wave profile

    表  1  计算材料参数

    Table  1.   Material parameters for calculation

    Density/
    (kg·m−3)
    Elastic modulus/GPaShear modulus/GPaP wave velocity/(m·s–1)S wave velocity/(m·s–1)Friction coefficientInternal friction angle/(°)
    230062.824.1522532370.144
    Expansion angle/(°)Hardening coefficientFracture strainTensile
    strength/MPa
    Cohesion strength/MPaShear stress ratioAbsolute plastic strain
    06.980.00753.580.330
    下载: 导出CSV
  • [1] 许金泉. 界面力学 [M]. 北京: 科学出版社, 2006.

    XU J Q. The mechanics of interface [M]. Beijing: Science Press, 2006.
    [2] RUBINSTEIN S M, COHEN G, FINEBERG J. Detachment fronts and the onset of dynamic friction [J]. Nature, 2004, 430(7003): 1005–1009. doi: 10.1038/nature02830
    [3] RUBINSTEIN S M, COHEN G, FINEBERG J. Dynamics of precursors to frictional sliding [J]. Physical Review Letters, 2007, 98(22): 226103. doi: 10.1103/PhysRevLett.98.226103
    [4] BEN-DAVID O, COHEN G, FINEBERG J. The dynamics of the onset of frictional slip [J]. Science, 2010, 330(6001): 211–214. doi: 10.1126/science.1194777
    [5] ZHU Y D, ZHENG Z J, ZHANG Y L, et al. Adhesion of elastic wavy surfaces: interface strengthening/weakening and mode transition mechanisms [J]. Journal of the Mechanics and Physics of Solids, 2021, 151: 104402. doi: 10.1016/j.jmps.2021.104402
    [6] PERSSON B N J. Sliding friction: physical principles and applications [M]. 2nd ed. Berlin: Springer, 2000.
    [7] TA W R, QIU S M, WANG Y L, et al. Volumetric contact theory to electrical contact between random rough surfaces [J]. Tribology International, 2021, 160: 107007. doi: 10.1016/j.triboint.2021.107007
    [8] GERDE E, MARDER M. Friction and fracture [J]. Nature, 2001, 413(6853): 285–288. doi: 10.1038/35095018
    [9] BAUMBERGER T, BERTHOUD P, CAROLI C. Physical analysis of the state- and rate-dependent friction law. Ⅱ. dynamic friction [J]. Physical Review B, 1999, 60(6): 3928–3939. doi: 10.1103/PhysRevB.60.3928
    [10] BRAUN O M, MANINI N, TOSATTI E. Size scaling of static friction [J]. Physical Review Letters, 2013, 110(8): 085503. doi: 10.1103/PhysRevLett.110.085503
    [11] BARRAS F, AGHABABAEI R, MOLINARI J F. Onset of sliding across scales: how the contact topography impacts frictional strength [J]. Physical Review Materials, 2021, 5(2): 023605. doi: 10.1103/PHYSREVMATERIALS.5.023605
    [12] SHAO R L, WAHLE M, ZIMMERMANN M. A model for the dynamic friction behaviour of rubber-like materials [J]. Tribology International, 2021, 164: 107220. doi: 10.1016/j.triboint.2021.107220
    [13] 张磊, 王文帅, 苗春贺, 等. 花岗岩粗糙表面动摩擦形态演化 [J]. 高压物理学报, 2021, 35(3): 031201. doi: 10.11858/gywlxb.20200640

    ZHANG L, WANG W S, MIAO C H, et al. Rough surface morphology of granite subjected to dynamic friction [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 031201. doi: 10.11858/gywlxb.20200640
    [14] BERMAN N, COHEN G, FINEBERG J. Dynamics and properties of the cohesive zone in rapid fracture and friction [J]. Physical Review Letters, 2020, 125(12): 125503. doi: 10.1103/PhysRevLett.125.125503
    [15] WANG P F, JIANG H B, XU S L, et al. Dynamic plastic instability of ring-shaped aluminum alloy with different interface behaviors [J]. International Journal of Impact Engineering, 2021, 155: 103898. doi: 10.1016/j.ijimpeng.2021.103898
    [16] 赵剑衡, 孙承纬, 段祝平, 等. 玻璃样品表面对失效波萌生的影响 [J]. 力学学报, 2001, 33(6): 834–838. doi: 10.3321/j.issn:0459-1879.2001.06.014

    ZHAO J H, SUN C W, DUAN Z P, et al. Effect of impacted surface of K9 glass sample on formation of failure wave [J]. Acta Mechanica Sinica, 2001, 33(6): 834–838. doi: 10.3321/j.issn:0459-1879.2001.06.014
    [17] 刘均伟, 张先锋, 刘闯, 等. 考虑摩擦因数变化的弹体高速侵彻混凝土质量侵蚀模型研究 [J]. 爆炸与冲击, 2021, 41(8): 083301. doi: 10.11883/bzycj-2020-0250

    LIU J W, ZHANG X F, LIU C, et al. Study on mass erosion model of projectile penetrating concrete at high speed considering variation of friction coefficient [J]. Explosion and Shock Waves, 2021, 41(8): 083301. doi: 10.11883/bzycj-2020-0250
    [18] POCHIRAJU K V, TANDON G P, PAGANO N J. Analyses of single fiber pushout considering interfacial friction and adhesion [J]. Journal of the Mechanics and Physics of Solids, 2001, 49(10): 2307–2338. doi: 10.1016/S0022-5096(01)00045-X
    [19] 王蕉, 楚锡华. 冲击载荷下颗粒材料临边界区域的波动行为及变形特征分析 [J]. 力学学报, 2021, 53(9): 2395–2403. doi: 10.6052/0459-1879-21-242

    WANG J, CHU X H. Analysis of wave behavior and deformation characteristics of granular materials in pro-border zone under impact load [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2395–2403. doi: 10.6052/0459-1879-21-242
    [20] ZHENG W, ZHANG S Y, XU N. Jamming of packings of frictionless particles with and without shear [J]. Chinese Physics B, 2018, 27(6): 066102. doi: 10.1088/1674-1056/27/6/066102
    [21] SCHOLZ C H. Earthquakes and friction laws [J]. Nature, 1998, 391(6662): 37–42. doi: 10.1038/34097
    [22] KANAMORI H, ANDERSON D L, HEATON T H. Frictional melting during the rupture of the 1994 Bolivian earthquake [J]. Science, 1998, 279(5352): 839–842. doi: 10.1126/science.279.5352.839
    [23] RUBINO V, ROSAKIS A J, LAPUSTA N. Understanding dynamic friction through spontaneously evolving laboratory earthquakes [J]. Nature Communications, 2017, 8: 15991. doi: 10.1038/ncomms15991
    [24] PYRAK-NOLTE L J, XU J P, HALEY G M. Elastic interface waves propagating in a fracture [J]. Physical Review Letters, 1992, 68(24): 3650–3653. doi: 10.1103/PhysRevLett.68.3650
    [25] XIA K W, ROSAKIS A J, KANAMORI H. Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition [J]. Science, 2004, 303(5665): 1859–1861. doi: 10.1126/science.1094022
    [26] FERRER C, SALAS F, PASCUAL M, et al. Discrete acoustic emission waves during stick-slip friction between steel samples [J]. Tribology International, 2010, 43(1/2): 1–6. doi: 10.1016/j.triboint.2009.02.009
    [27] BRAUN O M, BAREL I, URBAKH M. Dynamics of transition from static to kinetic friction [J]. Physical Review Letters, 2009, 103(19): 194301. doi: 10.1103/PhysRevLett.103.194301
    [28] SVETLIZKY I, FINEBERG J. Classical shear cracks drive the onset of dry frictional motion [J]. Nature, 2014, 509(7499): 205–208. doi: 10.1038/nature13202
    [29] DI BARTOLOMEO M, MASSI F, BAILLET L, et al. Wave and rupture propagation at frictional bimaterial sliding interfaces: from local to global dynamics, from stick-slip to continuous sliding [J]. Tribology International, 2012, 52: 117–131. doi: 10.1016/j.triboint.2012.03.008
    [30] KAMMER D S, MUÑOZ D P, MOLINARI J F. Length scale of interface heterogeneities selects propagation mechanism of frictional slip fronts [J]. Journal of the Mechanics and Physics of Solids, 2016, 88: 23–34. doi: 10.1016/j.jmps.2015.12.014
    [31] 李永池. 波动力学 [M]. 合肥: 中国科学技术大学出版社, 2015.

    LI Y C. Wave mechanics [M]. Hefei: University of Science and Technology of China Press, 2015.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  104
  • PDF下载量:  45
出版历程
  • 收稿日期:  2022-02-17
  • 修回日期:  2022-03-09
  • 录用日期:  2022-02-17
  • 刊出日期:  2022-10-11

目录

/

返回文章
返回