摩擦界面波动效应的数值模拟

刘永贵 惠蒙蒙 沈玲燕

刘永贵, 惠蒙蒙, 沈玲燕. 摩擦界面波动效应的数值模拟[J]. 高压物理学报, 2022, 36(5): 052301. doi: 10.11858/gywlxb.20220513
引用本文: 刘永贵, 惠蒙蒙, 沈玲燕. 摩擦界面波动效应的数值模拟[J]. 高压物理学报, 2022, 36(5): 052301. doi: 10.11858/gywlxb.20220513
LIU Yonggui, HUI Mengmeng, SHEN Lingyan. Numerical Study on Wave Effect of the Frictional Interface[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 052301. doi: 10.11858/gywlxb.20220513
Citation: LIU Yonggui, HUI Mengmeng, SHEN Lingyan. Numerical Study on Wave Effect of the Frictional Interface[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 052301. doi: 10.11858/gywlxb.20220513

摩擦界面波动效应的数值模拟

doi: 10.11858/gywlxb.20220513
基金项目: 河南省高校基本科研业务费(NSFRF210322)
详细信息
    作者简介:

    刘永贵(1982-),男,博士,讲师,主要从事波动力学研究. E-mail:liuyongg@hpu.edu.cn

    通讯作者:

    沈玲燕(1984-),女,博士,讲师,主要从事冲击动力学研究. E-mail:lyshen@hpu.edu.cn

  • 中图分类号: O346

Numerical Study on Wave Effect of the Frictional Interface

  • 摘要: 界面摩擦是一种普遍的自然现象。基于摩擦的界面微接触断裂机制,采用线弹性本构关系和D-P破坏准则,建立了包含三角形微凸起的二维界面摩擦模型,采用有限元分析对入射波和摩擦界面的相互作用进行数值模拟。结果表明:在主动加载的微过程中,界面存在显著的应力波动及精细结构特征,波阵面在界面近区域内的演化具有对称扩散性,应力扰动作用于界面微凸起可诱发其断裂,从而以断裂面为中心形成纵波、横波和界面波结构。一个有趣的现象是,在加载的瞬间,界面几乎同步产生了微应力扰动,以纵波形式向基体内传播,更多比较算例和分析证实该扰动产生的物理机制同作用在界面的整体重力微调整有关。该工作揭示了摩擦早期的界面波动效应及其微断裂机制,有望为地震预测提供新的有效途径,从而实现将地震预测时间提前。

     

  • 图  摩擦界面模型

    Figure  1.  Friction interface model

    图  Part-1上界面单元的波动特征

    Figure  2.  Wave structure of interface elements at Part-1

    图  Part-2下界面单元的波动特征

    Figure  3.  Wave structure of interface at Part-2

    图  应力波的传播及演化

    Figure  4.  Propagation pattern of stress wave in space-time

    图  微凸起的断裂过程云图

    Figure  5.  Stress nephogram of micro bulge fracture process

    图  微凸起断裂的波动效应

    Figure  6.  Wave effect induced by micro bulge fracture

    图  微凸起正上方单元的应力扰动

    Figure  7.  Stress disturbance of elements directly above the micro bulge

    图  基于特征线理论的波结构

    Figure  8.  Wave structure based on characteristic line theory

    图  t=0.315 μs时3个应力扰动的波阵面形状

    Figure  9.  Wave fronts of three stress disturbances (t=0.315 μs)

    图  10  σ22波的精细结构

    Figure  10.  Fine structure of σ22 wave

    图  11  界面性能对新纵波扰动的影响

    Figure  11.  Effect of frictional interface properties

    图  12  界面新纵波扰动的形成机制

    Figure  12.  Mechanism of interfacial longitudinal wave

    图  13  地震波结构模拟

    Figure  13.  Simulation of seismic wave profile

    表  1  计算材料参数

    Table  1.   Material parameters for calculation

    Density/
    (kg·m−3)
    Elastic modulus/GPaShear modulus/GPaP wave velocity/(m·s–1)S wave velocity/(m·s–1)Friction coefficientInternal friction angle/(°)
    230062.824.1522532370.144
    Expansion angle/(°)Hardening coefficientFracture strainTensile
    strength/MPa
    Cohesion strength/MPaShear stress ratioAbsolute plastic strain
    06.980.00753.580.330
    下载: 导出CSV
  • [1] 许金泉. 界面力学 [M]. 北京: 科学出版社, 2006.

    XU J Q. The mechanics of interface [M]. Beijing: Science Press, 2006.
    [2] RUBINSTEIN S M, COHEN G, FINEBERG J. Detachment fronts and the onset of dynamic friction [J]. Nature, 2004, 430(7003): 1005–1009. doi: 10.1038/nature02830
    [3] RUBINSTEIN S M, COHEN G, FINEBERG J. Dynamics of precursors to frictional sliding [J]. Physical Review Letters, 2007, 98(22): 226103. doi: 10.1103/PhysRevLett.98.226103
    [4] BEN-DAVID O, COHEN G, FINEBERG J. The dynamics of the onset of frictional slip [J]. Science, 2010, 330(6001): 211–214. doi: 10.1126/science.1194777
    [5] ZHU Y D, ZHENG Z J, ZHANG Y L, et al. Adhesion of elastic wavy surfaces: interface strengthening/weakening and mode transition mechanisms [J]. Journal of the Mechanics and Physics of Solids, 2021, 151: 104402. doi: 10.1016/j.jmps.2021.104402
    [6] PERSSON B N J. Sliding friction: physical principles and applications [M]. 2nd ed. Berlin: Springer, 2000.
    [7] TA W R, QIU S M, WANG Y L, et al. Volumetric contact theory to electrical contact between random rough surfaces [J]. Tribology International, 2021, 160: 107007. doi: 10.1016/j.triboint.2021.107007
    [8] GERDE E, MARDER M. Friction and fracture [J]. Nature, 2001, 413(6853): 285–288. doi: 10.1038/35095018
    [9] BAUMBERGER T, BERTHOUD P, CAROLI C. Physical analysis of the state- and rate-dependent friction law. Ⅱ. dynamic friction [J]. Physical Review B, 1999, 60(6): 3928–3939. doi: 10.1103/PhysRevB.60.3928
    [10] BRAUN O M, MANINI N, TOSATTI E. Size scaling of static friction [J]. Physical Review Letters, 2013, 110(8): 085503. doi: 10.1103/PhysRevLett.110.085503
    [11] BARRAS F, AGHABABAEI R, MOLINARI J F. Onset of sliding across scales: how the contact topography impacts frictional strength [J]. Physical Review Materials, 2021, 5(2): 023605. doi: 10.1103/PHYSREVMATERIALS.5.023605
    [12] SHAO R L, WAHLE M, ZIMMERMANN M. A model for the dynamic friction behaviour of rubber-like materials [J]. Tribology International, 2021, 164: 107220. doi: 10.1016/j.triboint.2021.107220
    [13] 张磊, 王文帅, 苗春贺, 等. 花岗岩粗糙表面动摩擦形态演化 [J]. 高压物理学报, 2021, 35(3): 031201. doi: 10.11858/gywlxb.20200640

    ZHANG L, WANG W S, MIAO C H, et al. Rough surface morphology of granite subjected to dynamic friction [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 031201. doi: 10.11858/gywlxb.20200640
    [14] BERMAN N, COHEN G, FINEBERG J. Dynamics and properties of the cohesive zone in rapid fracture and friction [J]. Physical Review Letters, 2020, 125(12): 125503. doi: 10.1103/PhysRevLett.125.125503
    [15] WANG P F, JIANG H B, XU S L, et al. Dynamic plastic instability of ring-shaped aluminum alloy with different interface behaviors [J]. International Journal of Impact Engineering, 2021, 155: 103898. doi: 10.1016/j.ijimpeng.2021.103898
    [16] 赵剑衡, 孙承纬, 段祝平, 等. 玻璃样品表面对失效波萌生的影响 [J]. 力学学报, 2001, 33(6): 834–838. doi: 10.3321/j.issn:0459-1879.2001.06.014

    ZHAO J H, SUN C W, DUAN Z P, et al. Effect of impacted surface of K9 glass sample on formation of failure wave [J]. Acta Mechanica Sinica, 2001, 33(6): 834–838. doi: 10.3321/j.issn:0459-1879.2001.06.014
    [17] 刘均伟, 张先锋, 刘闯, 等. 考虑摩擦因数变化的弹体高速侵彻混凝土质量侵蚀模型研究 [J]. 爆炸与冲击, 2021, 41(8): 083301. doi: 10.11883/bzycj-2020-0250

    LIU J W, ZHANG X F, LIU C, et al. Study on mass erosion model of projectile penetrating concrete at high speed considering variation of friction coefficient [J]. Explosion and Shock Waves, 2021, 41(8): 083301. doi: 10.11883/bzycj-2020-0250
    [18] POCHIRAJU K V, TANDON G P, PAGANO N J. Analyses of single fiber pushout considering interfacial friction and adhesion [J]. Journal of the Mechanics and Physics of Solids, 2001, 49(10): 2307–2338. doi: 10.1016/S0022-5096(01)00045-X
    [19] 王蕉, 楚锡华. 冲击载荷下颗粒材料临边界区域的波动行为及变形特征分析 [J]. 力学学报, 2021, 53(9): 2395–2403. doi: 10.6052/0459-1879-21-242

    WANG J, CHU X H. Analysis of wave behavior and deformation characteristics of granular materials in pro-border zone under impact load [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2395–2403. doi: 10.6052/0459-1879-21-242
    [20] ZHENG W, ZHANG S Y, XU N. Jamming of packings of frictionless particles with and without shear [J]. Chinese Physics B, 2018, 27(6): 066102. doi: 10.1088/1674-1056/27/6/066102
    [21] SCHOLZ C H. Earthquakes and friction laws [J]. Nature, 1998, 391(6662): 37–42. doi: 10.1038/34097
    [22] KANAMORI H, ANDERSON D L, HEATON T H. Frictional melting during the rupture of the 1994 Bolivian earthquake [J]. Science, 1998, 279(5352): 839–842. doi: 10.1126/science.279.5352.839
    [23] RUBINO V, ROSAKIS A J, LAPUSTA N. Understanding dynamic friction through spontaneously evolving laboratory earthquakes [J]. Nature Communications, 2017, 8: 15991. doi: 10.1038/ncomms15991
    [24] PYRAK-NOLTE L J, XU J P, HALEY G M. Elastic interface waves propagating in a fracture [J]. Physical Review Letters, 1992, 68(24): 3650–3653. doi: 10.1103/PhysRevLett.68.3650
    [25] XIA K W, ROSAKIS A J, KANAMORI H. Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition [J]. Science, 2004, 303(5665): 1859–1861. doi: 10.1126/science.1094022
    [26] FERRER C, SALAS F, PASCUAL M, et al. Discrete acoustic emission waves during stick-slip friction between steel samples [J]. Tribology International, 2010, 43(1/2): 1–6. doi: 10.1016/j.triboint.2009.02.009
    [27] BRAUN O M, BAREL I, URBAKH M. Dynamics of transition from static to kinetic friction [J]. Physical Review Letters, 2009, 103(19): 194301. doi: 10.1103/PhysRevLett.103.194301
    [28] SVETLIZKY I, FINEBERG J. Classical shear cracks drive the onset of dry frictional motion [J]. Nature, 2014, 509(7499): 205–208. doi: 10.1038/nature13202
    [29] DI BARTOLOMEO M, MASSI F, BAILLET L, et al. Wave and rupture propagation at frictional bimaterial sliding interfaces: from local to global dynamics, from stick-slip to continuous sliding [J]. Tribology International, 2012, 52: 117–131. doi: 10.1016/j.triboint.2012.03.008
    [30] KAMMER D S, MUÑOZ D P, MOLINARI J F. Length scale of interface heterogeneities selects propagation mechanism of frictional slip fronts [J]. Journal of the Mechanics and Physics of Solids, 2016, 88: 23–34. doi: 10.1016/j.jmps.2015.12.014
    [31] 李永池. 波动力学 [M]. 合肥: 中国科学技术大学出版社, 2015.

    LI Y C. Wave mechanics [M]. Hefei: University of Science and Technology of China Press, 2015.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  79
  • PDF下载量:  44
出版历程
  • 收稿日期:  2022-02-17
  • 修回日期:  2022-03-09
  • 录用日期:  2022-02-17
  • 刊出日期:  2022-10-11

目录

    /

    返回文章
    返回