聚能装药宏观偏差耦合对射流横向偏移的影响

聂源 梁斌 袁小雅 刘闯 李毅

聂源, 梁斌, 袁小雅, 刘闯, 李毅. 聚能装药宏观偏差耦合对射流横向偏移的影响[J]. 高压物理学报, 2022, 36(5): 055101. doi: 10.11858/gywlxb.20220511
引用本文: 聂源, 梁斌, 袁小雅, 刘闯, 李毅. 聚能装药宏观偏差耦合对射流横向偏移的影响[J]. 高压物理学报, 2022, 36(5): 055101. doi: 10.11858/gywlxb.20220511
NIE Yuan, LIANG Bin, YUAN Xiaoya, LIU Chuang, LI Yi. Influence of Coupled Macroscopic Deviation of Shaped Charge on Lateral Displacement of Jet[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 055101. doi: 10.11858/gywlxb.20220511
Citation: NIE Yuan, LIANG Bin, YUAN Xiaoya, LIU Chuang, LI Yi. Influence of Coupled Macroscopic Deviation of Shaped Charge on Lateral Displacement of Jet[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 055101. doi: 10.11858/gywlxb.20220511

聚能装药宏观偏差耦合对射流横向偏移的影响

doi: 10.11858/gywlxb.20220511
基金项目: 国家自然科学基金(12102413)
详细信息
    作者简介:

    聂 源(1992—),男,博士,工程师,主要从事高效毁伤研究. E-mail:nieyuan@caep.cn

    通讯作者:

    梁 斌(1976—),男,博士,研究员,主要从事高效毁伤研究. E-mail:lb_110119@163.com

  • 中图分类号: O358; O521.9

Influence of Coupled Macroscopic Deviation of Shaped Charge on Lateral Displacement of Jet

  • 摘要: 聚能装药宏观偏差是引发射流横向偏移的原因之一,为研究多种宏观偏差对射流横向偏移的影响规律,根据射流成形理论推导了同轴度偏差、壁厚偏差和位置偏差对射流横向偏移量的影响的理论分析模型。对存在多种宏观偏差的聚能装药采用数值模拟方法开展射流形成过程的计算,获得了各类宏观偏差对射流横向偏移量的影响规律。结果表明,单一的同轴度偏差和位置偏差均导致射流呈二次曲线状,单一的壁厚偏差使射流偏转,但射流仍保持直线状。在多种宏观偏差相互耦合的情况下,射流横向偏移量约为各单一因素引起的偏移量的矢量和。研究成果可为提高聚能装药的稳定性提供参考。

     

  • 图  聚能装药中药型罩典型宏观偏差示意图

    Figure  1.  Schematic diagram of typical macroscopic deviations of shaped charge liner

    图  含典型宏观偏差的聚能装药数值模型

    Figure  2.  Numerical simulation models of shaped charge with macroscopic deviations

    图  不同宏观偏差耦合时典型时刻(t=60 μs)射流成形的数值模拟图像

    Figure  3.  Numerical simulation images of jet induced by different coupled macroscopic deviations at t=60 μs

    图  不同同轴度偏差时射流的横向偏移量与相对位置的关系曲线

    Figure  4.  Jet lateral displacement vesus relative position for different coaxiality deviations

    图  不同壁厚偏差时射流的横向偏移量与相对位置的关系曲线

    Figure  5.  Jet lateral displacement versus relative position with different liner thickness deviations

    图  不同位置偏差时射流的横向偏移量与相对位置的关系曲线

    Figure  6.  Jet lateral displacement versus relative position for different position deviations

    图  不同同轴度偏差与壁厚偏差耦合时射流的横向偏移量与相对位置的关系曲线

    Figure  7.  Jet lateral displacement versus relative position for different coupled deviations of coaxiality and liner thickness

    图  不同同轴度偏差与位置偏差耦合时射流的横向偏移量与相对位置的关系曲线

    Figure  8.  Jet lateral displacement versus relative position for different coupled deviations of coaxiality and position

    图  不同壁厚偏差与位置偏差耦合时射流的横向偏移量与相对位置的关系曲线

    Figure  9.  Jet lateral displacement versus relative position for different coupled deviations of liner thicknesses and position

    图  10  3种不同偏差耦合时射流的横向偏移量与相对位置的关系曲线

    Figure  10.  Jet lateral displacement versus relative position for different coupled deviations of coaxiality, liner thicknesses and position

  • [1] PAI V V, TITOV V M, LUK’YANOV Y L, et al. Instability of a conical liner during shaped-charge jet formation [J]. Combustion, Explosion, and Shock Waves, 2019, 55(4): 434–438. doi: 10.1134/S0010508219040099
    [2] 孙建, 胡焕性. 高威力精密破甲战斗部技术研究 [J]. 火炸药学报, 2004, 27(1): 23–25. doi: 10.3969/j.issn.1007-7812.2004.01.007

    SUN J, HU H X. The technology of powerful precision shaped charge warhead [J]. Chinese Journal of Explosives & Propellants, 2004, 27(1): 23–25. doi: 10.3969/j.issn.1007-7812.2004.01.007
    [3] WANG F, JIANG J W, MEN J B, et al. Investigation on shaped charge jet density gradient for metal matrix composites: experimental design and execution [J]. International Journal of Impact Engineering, 2017, 109: 311–320. doi: 10.1016/j.ijimpeng.2017.07.011
    [4] REN B X, TAO G, WEN P, et al. Analysis of the formation mechanism of the slug and jet center hole of axisymmetric shaped charges [J]. Results in Physics, 2018, 9: 135–141. doi: 10.1016/j.rinp.2018.02.040
    [5] 程明强. 小口径破甲战斗部破甲稳定性的工艺研究 [D]. 南京: 南京理工大学, 2008: 22−32.

    CHENG M Q. Technology research of small calibre armour penetration warhead’s armour penetration stability [D]. Nanjing: Nanjing University of Science and Technology, 2008: 22−32.
    [6] AYISIT O. The influence of asymmetries in shaped charge performance [J]. International Journal of Impact Engineering, 2008, 35(12): 1399–1404. doi: 10.1016/j.ijimpeng.2008.07.027
    [7] ARGADE G N, RAO B R, DIXIT V K. Effect of geometric out of planar gap on jet formation in multi-pallet type charge mass of shaped charge warheads [C]//International Ballistics Society. Proceedings of the 31st International Symposium on Ballistics. Hyderabad, 2019: 2025−2035.
    [8] COPPINGER M J, UHLIG W C, NIEDERHAUS J H J. Simulating lateral drift of a shaped charge jet in ALEGRA [J]. International Journal of Impact Engineering, 2020, 136: 103415. doi: 10.1016/j.ijimpeng.2019.103415
    [9] 刘建荣, 张国伟, 徐立新, 等. 药型罩加工精度对破甲战斗部威力影响的研究 [J]. 弹箭与制导学报, 2012, 32(3): 114–117. doi: 10.3969/j.issn.1673-9728.2012.03.032

    LIU J R, ZHANG G W, XU L X, et al. The research of influence of liner’s precision on the power of armor-penetrating warhead [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(3): 114–117. doi: 10.3969/j.issn.1673-9728.2012.03.032
    [10] 高嘉惠, 郭晓红, 张丽娜, 等. 聚能破甲战斗部装药结构精度研究 [C]//战斗部与毁伤技术专业委员会. 第十六届战斗部与毁伤技术学术交流会论文集. 昆明, 2019: 258−261.

    GAO J H, GUO X H, ZHANG L N, et al. Research on the accuracy of the charge structure of the shaped charge warhead [C]//Warhead and Damage Technology Professional Committee, 16th Warhead and Damage Technology Academic Conference. Kunming, 2019: 258−261.
    [11] ASELTINE C L. Analytical predictions of the effect of warhead asymmetries on shaped charge performance [C]//International Ballistics Society. Proceedings of the 4th International Symposium on Ballistics. Monterey, California, USA, 1978: 1−32.
    [12] 石健, 王宝兴, 郭红军, 等. 装药与药型罩不对称因素对射孔弹性能的影响 [J]. 测井技术, 2007, 31(5): 500–502. doi: 10.3969/j.issn.1004-1338.2007.05.025

    SHI J, WANG B X, GUO H J, et al. The influence of unsymmetrical charge and liner on the performance of perforating charge [J]. Well Logging Technology, 2007, 31(5): 500–502. doi: 10.3969/j.issn.1004-1338.2007.05.025
    [13] ZUKAS J A, SCHEFFLER D R. Practical aspects of numerical simulations of dynamic events: effects of meshing [J]. International Journal of Impact Engineering, 2000, 24(9): 925–945. doi: 10.1016/S0734-743X(00)00012-9
    [14] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics. The Hague: International Ballistics Society, 1983: 541−547.
    [15] WILKINS M L. Calculation of elastic plastic flow [R]. Livermore, California: Lawrence Radiation Laboratory, University of California, 1963.
    [16] LEE E, FINGER M, COLLINS W. JWL equation of state coefficients for high explosives: UCID-16189 [R]. Livermore: Lawrence Livermore National Laboratory, 1973.
  • 加载中
图(10)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  116
  • PDF下载量:  48
出版历程
  • 收稿日期:  2022-02-15
  • 修回日期:  2022-03-01
  • 录用日期:  2022-03-01
  • 网络出版日期:  2022-09-13
  • 刊出日期:  2022-10-11

目录

    /

    返回文章
    返回