Penetration Mechanical Properties of Double-Layer Carbon Nanotube Films
-
摘要: 碳纳米管(carbon nanotube, CNT)薄膜具有优异的比强度和比韧性,同时具有优良的导电性和储能特性,在人工肌肉、电子屏蔽及冲击防护等领域都具有广泛的应用前景。然而,目前相关研究主要集中在CNT薄膜的准静态力学性能,其抗冲击力学性能方面的研究尚欠缺。通过实验研究CNT薄膜在中、低速压入穿透下的力学行为,结合数值模拟分析发现:直径为1 mm的钢珠穿透单层CNT薄膜的临界穿透速度约为25 m/s,最大吸能对应的速度约为30 m/s;双层CNT薄膜的临界穿透速度约为40 m/s,最大吸能对应的速度约为60 m/s。与冲击破坏孔洞相比,准静态下CNT薄膜的破坏孔洞边缘更薄,拉伸变形更明显。通过水、润滑油、高真空润滑脂等中间界面改性,可以提升双层CNT薄膜的抗冲击力学性能和吸能效果。研究结果有助于更好地理解CNT薄膜的吸能机理,为防护结构设计提供参考。Abstract: Carbon nanotube (CNT) films have broad application prospects in the fields of artificial muscles, electronic shielding, and impact protection, owing to their excellent mechanical and electrical conductivity properties. However, the latest studies mainly focus on the quasi-static mechanical properties of the CNT films, while the transverse impact mechanical properties and microscopic mechanisms are still under investigated. Herein, the mechanical behavior of CNT films under medium/low-speed penetration is experimentally and numerically investigated. The results show that the critical penetration speed of the single-layer CNT film is about 25 m/s, while the speed of the maximum energy absorption is about 30 m/s, for a 1 mm diameter steel ball impacting the CNT film. In contrast, the critical penetration speed of the double-layer CNT film is about 40 m/s, and the speed of the maximum energy absorption is about 60 m/s. Under the quasi-static condition, the damaged edge of the cavity in the CNT film is thinner and the stretching deformation is more prominent than those in the impact case; the intermediate interface modification by water, oil, and high vacuum grease can improve the impact mechanical properties and energy absorption effect of the double-layer CNT film. Overall, this work can provide a better understanding on the penetration mechanism of CNT films and guide the design of anti-impact structures.
-
Key words:
- carbon nanotube film /
- impact /
- penetration /
- interface /
- finite element simulation
-
图 11 穿透后CNT薄膜试样表面的微观形貌:(a)单层CNT薄膜冲击穿孔形态(16 m/s);(b)单层CNT薄膜准静态穿孔形态(2.67×10−4 m/s);(c)双层CNT薄膜冲击穿孔形态(水,33 m/s);(d)双层CNT薄膜准静态穿孔形态(水,2.67×10−4 m/s);(e)双层CNT薄膜冲击穿孔形态(HVG,35 m/s);(f)双层CNT薄膜准静态穿孔形态(HVG,2.67×10−4 m/s)
Figure 11. Microscopic morphology of the penetrated CNT film samples surface: (a) impact perforation morphology of single-layer CNT film (16m/s); (b) quasi-static perforated morphology of single-layer CNT film (2.67×10−4m/s); (c) impact perforation morphology of double-layer CNT film (water, 33 m/s); (d) quasi-static perforated morphology of double-layer CNT film (water, 2.67×10−4 m/s); (e) impact perforation morphology of double-layer CNT film (HVG,35 m/s); (f) quasi-static perforated morphology ofdouble-layer CNT film (HVG, 2.67×10−4 m/s)
表 1 CNT薄膜材料的力学参数
Table 1. Mechanical parameters of CNT materials
E1/MPa E2/MPa E3/MPa μ12 μ13 μ23 G12/MPa G13/MPa G23/MPa 2067 2067 2067 0.1 0.3 0.3 1.72 1.72 1.72 表 2 CNT薄膜材料的工程弹性常数
Table 2. Engineering elastic parameters of CNT materials
Longitudinal
tensile
strength/PaLongitudinal
compressive
strength/PaLongitudinal
shear
strength/PaTransverse
tensile
strength/PaTransverse
compressive
strength/PaTransverse
shear
strength/Pa80 2 000 1000 80 2 000 1000 表 3 CNT薄膜材料的损伤演化力学参数
Table 3. Mechanical parameters of damage evolution of CNT materials
Longitudinal tensile fracture energy/
(kJ·m−2)Longitudinal compressive
fracture energy/
(kJ·m−2)Transverse tensile
fracture energy/
(kJ·m−2)Transverse compressive fracture energy/
(kJ·m−2)0.01 0.3 0.01 0.3 -
[1] ZHANG M, FANG S L, ZAKHIDOV A A, et al. Strong, transparent, multifunctional, carbon nanotube sheets [J]. Science, 2005, 309(5738): 1215–1219. doi: 10.1126/science.1115311 [2] XU J, LI Y B, XIANG Y, et al. A super energy mitigation nanostructure at high impact speed based on buckyball system [J]. Plos One, 2013, 8(5): e64697. doi: 10.1371/journal.pone.0064697 [3] WIERZBICKI T. Energy absorption of structures and materials [J]. International Journal of Impact Engineering, 2004, 30(7): 881–882. doi: 10.1016/j.ijimpeng.2003.12.004 [4] XIE B, LIU Y L, DING Y T, et al. Mechanics of carbon nanotube networks: microstructural evolution and optimal design [J]. Soft Matter, 2011, 7(21): 10039–10047. doi: 10.1039/c1sm06034a [5] ANZAR N, HASAN R, TYAGI M, et al. Carbon nanotube: a review on synthesis, properties and plethora of applications in the field of biomedical science [J]. Sensors International, 2020, 1: 10003. doi: 10.1016/j.sintl.2020.100003 [6] JIANG K L, WANG J P, LI Q Q, et al. Superaligned carbon nanotube arrays, films, and yarns: a road to applications [J]. Advanced Materials, 2011, 23(9): 1154–1161. doi: 10.1002/adma.201003989 [7] KAUSALA M, ZHANG L C. Energy absorption capacity of carbon nanotubes under ballistic impact [J]. Applied Physics Letters, 2006, 89(12): 123127. doi: 10.1063/1.2356325 [8] PRABHA P S, RAGAI I G, RAJESH R, et al. FEA analysis of ballistic impact on carbon nanotube bulletproof vest [J]. Materials Today: Proceedings, 2021, 46: 3937–3940. doi: 10.1016/J.MATPR.2021.02.424 [9] COUR-PALAIS B G, CREWS J L. A multi-shock concept for spacecraft shielding [J]. International Journal of Impact Engineering, 1990, 10(1): 135–146. doi: 10.1016/0734-743X(90)90054-Y [10] XIAO K L, LEI X D, CHEN Y Y, et al. Extraordinary impact resistance of carbon nanotube film with crosslinks under micro-ballistic impact [J]. Carbon, 2021, 175: 478–489. doi: 10.1016/j.carbon.2021.01.009 [11] QU S X, JIANG X R, LI Q W, et al. Developing strong and tough carbon nanotube films by a proper dispersing strategy and enhanced interfacial interactions [J]. Carbon, 2019, 149: 117–124. doi: 10.1016/j.carbon.2019.04.033 [12] KĘDZIERSKI P, POPŁAWSKI A, GIELETA R, et al. Experimental and numerical investigation of fabric impact behavior [J]. Composites Part B: Engineering, 2015, 69: 452–459. doi: 10.1016/j.compositesb.2014.10.028 [13] SAKURAI S, KAMADA F, FUTABA D N, et al. Influence of lengths of millimeter-scale single-walled carbon nanotube on electrical and mechanical properties of buckypaper [J]. Nanoscale Research Letters, 2013, 8(1): 546. doi: 10.1186/1556-276X-8-546 [14] MA Y J, YAO X F, ZHENG Q S, et al. Carbon nanotube films change Poisson’s ratios from negative to positive [J]. Applied Physics Letter. 2010, 97(6): 061909. [15] WANG P F, YANG J L, LI X, et al. Modification of the contact surfaces for improving the puncture resistance of laminar structures [J]. Scientific Reports, 2017, 7(1): 16615. doi: 10.1038/s41598-017-06007-3 [16] WANG P F, ZHANG X, ZHANG H, et al. Energy absorption mechanisms of modified double-aluminum layers under low-velocity impact [J]. International Journal of Applied Mechanics, 2015, 7(6): 1550086. doi: 10.1142/S1758825115500866 [17] 常晋源, 王德雅, 张磊, 等. 单丝碳纳米管纤维的横向冲击性能研究 [J]. 实验力学, 2021, 36(4): 507–515. doi: 10.7520/1001-4888-20-250CHANG J Y, WANG D Y, ZHANG L, et al. Transverse impact properties of single carbon nanotube fibers [J]. Journal of Experimental Mechanics, 2021, 36(4): 507–515. doi: 10.7520/1001-4888-20-250 [18] DONG J L, SONG X, WANG Z J, et al. Impact resistance of single-layer metallic glass nanofilms to high-velocity micro-particle penetration [J]. Extreme Mechanics Letters, 2021, 44: 101258. doi: 10.1016/j.eml.2021.101258 [19] TANG F, DONG C, YANG Z, et al. Protective performance and dynamic behavior of composite body armor with shear stiffening gel as buffer material under ballistic impact [J]. Composites Science and Technology, 2022, 218: 109190. doi: 10.1016/j.compscitech.2021.109190 [20] XUAN H J, HU Y Q, WU Y N, et al. Containment ability of Kevlar 49 composite case under spinning impact [J]. Journal of Aerospace Engineering, 2018, 31(2): 04017096. doi: 10.1061/(ASCE)AS.1943-5525.0000806 [21] LIU L L, ZHAO Z H, CHEN W, et al. Influence of pre-tension on ballistic impact performance of multi-layer Kevlar 49 woven fabrics for gas turbine engine containment systems [J]. Chinese Journal of Aeronautics, 2018, 31(6): 1273–1286. doi: 10.1016/j.cja.2018.03.021 [22] WANG Y Q, MIAO Y Y, SWENSON D, et al. Digital element approach for simulating impact and penetration of textiles [J]. International Journal of Impact Engineering, 2010, 37(5): 552–560. doi: 10.1016/j.ijimpeng.2009.10.009 [23] LIU L L, CAI M, LUO G, et al. Macroscopic numerical simulation method of multi-phase STF-impregnated Kevlar fabrics. part 2: material model and numerical simulation [J]. Composite Structures, 2021, 262: 113662. doi: 10.1016/j.compstruct.2021.113662 [24] 李清文, 赵静娜, 张骁骅. 碳纳米管纤维的物理性能与宏量制备及其应用 [J]. 纺织学报, 2018, 39(12): 145–151. doi: 10.13475/j.fzxb.20180806607LI Q W, ZHAO J N, ZHANG X H. Physical properties and mass preparation and application of carbon nanotube fibers [J]. Journal of Textile Research, 2018, 39(12): 145–151. doi: 10.13475/j.fzxb.20180806607 [25] 吴昆杰, 张永毅, 勇振中, 等. 碳纳米管纤维的连续制备及高性能化 [J/OL]. 物理化学学报, 2021: 1−25. (2021−01−17) [2021−12−01]. http://kns.cnki.net/kcms/detail/11.1892.o6.20210803.1027.002.html.WU K J, ZHANG Y Y, YONG Z Z, et al. Continuous preparation and performance enhancement techniques of carbon nanotube fibers [J/OL]. Acta Physico-Chimica Sinica, 2021: 1−25. (2021−01−17) [2021−12−01]. http://kns.cnki.net/kcms/detail/11.1892.o6.20210803.1027.002.html. [26] WANG J N, LUO X G, WU T, et al. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity [J]. Nature Communications, 2014, 5(1): 3848. doi: 10.1038/ncomms4848 [27] RYU S, CHOU J B, LEE K et al. Direct insulation-to-conduction transformation of adhesive catecholamine for simultaneous increases of electrical conductivity and mechanical strength of CNT fibers [J]. Advanced Materials, 2015, 27(21): 3250–3255. doi: 10.1002/adma.201570141 [28] CHEN W, HUDSPETH M, GUO Z, et al. Multi-scale experiments on soft body armors under projectile normal impact [J]. International Journal of Impact Engineering, 2017, 108: 63–72. doi: 10.1016/j.ijimpeng.2017.04.018 [29] HAN B S, XUE XIANG, XU Y J, et al. Preparation of carbon nanotube film with high alignment and elevated density [J]. Carbon, 2017, 122: 496–503. doi: 10.1016/j.carbon.2017.04.072 [30] XU W, CHEN Y, ZHAN H, et al. High-strength carbon nanotube film from improving alignment and densification [J]. Nano Letters, 2016(2), 16: 946−952. [31] ZHAO Y S, MIAO L L, HAO W Z, et al. Two-dimensional carbon nanotube woven highly-stretchable film with strain-induced tunable impacting performance [J]. Carbon, 2022, 189: 539–547. doi: 10.1016/j.carbon.2021.12.065 [32] WANG Y, GAO Y N, YUE T N, et al. Achieving high-performance and tunable microwave shielding in multi-walled carbon nanotubes/polydimethylsiloxane composites containing liquid metals [J]. Applied Surface Science, 2021, 563: 105255. doi: 10.1016/J.APSUSC.2021.150255 [33] ZHANG L C, KAUSALA M, XIAO K Q. The intrinsic frictional property of carbon nanotubes [J]. Advanced Materials Research, 2008, 32: 1–4. doi: 10.4028/www.scientific.net/AMR.32.1 [34] 胡东梅, 黄献聪, 李丹, 等. 碳纳米管薄膜/超高分子量聚乙烯叠层材料的防弹性能 [J]. 东华大学学报(自然科学版), 2018, 44(3): 341–346. doi: 10.3969/j.issn.1671-0444.2018.03.001HU D M, HUANG X C, LI D, et al. Bulletproof performance of carbon nanotube film/UHMWPE with multi-layer structure [J]. Journal of Donghua University (Natural Science), 2018, 44(3): 341–346. doi: 10.3969/j.issn.1671-0444.2018.03.001 [35] HASHIN Z. Failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics, 1980, 47(2): 329–334. doi: 10.1115/1.3153664