双层碳纳米管薄膜的侵彻力学性能

王文帅 王鹏飞 田杰 徐松林

王文帅, 王鹏飞, 田杰, 徐松林. 双层碳纳米管薄膜的侵彻力学性能[J]. 高压物理学报, 2022, 36(4): 044105. doi: 10.11858/gywlxb.20220508
引用本文: 王文帅, 王鹏飞, 田杰, 徐松林. 双层碳纳米管薄膜的侵彻力学性能[J]. 高压物理学报, 2022, 36(4): 044105. doi: 10.11858/gywlxb.20220508
WANG Wenshuai, WANG Pengfei, TIAN Jie, XU Songlin. Penetration Mechanical Properties of Double-Layer Carbon Nanotube Films[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044105. doi: 10.11858/gywlxb.20220508
Citation: WANG Wenshuai, WANG Pengfei, TIAN Jie, XU Songlin. Penetration Mechanical Properties of Double-Layer Carbon Nanotube Films[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044105. doi: 10.11858/gywlxb.20220508

双层碳纳米管薄膜的侵彻力学性能

doi: 10.11858/gywlxb.20220508
基金项目: 国家自然科学基金(11872361);中央高校基本科研业务费专项资金(WK2480000008)
详细信息
    作者简介:

    王文帅(1996-),男,硕士研究生,主要从事碳纳米管膜力学性能研究.E-mail:wwsds@mail.ustc.edu.cn

    通讯作者:

    王鹏飞(1985-),男,博士,副研究员,主要从事材料动态力学行为研究.E-mail:pfwang5@ustc.edu.cn

  • 中图分类号: O385; O521.2

Penetration Mechanical Properties of Double-Layer Carbon Nanotube Films

  • 摘要: 碳纳米管(carbon nanotube, CNT)薄膜具有优异的比强度和比韧性,同时具有优良的导电性和储能特性,在人工肌肉、电子屏蔽及冲击防护等领域都具有广泛的应用前景。然而,目前相关研究主要集中在CNT薄膜的准静态力学性能,其抗冲击力学性能方面的研究尚欠缺。通过实验研究CNT薄膜在中、低速压入穿透下的力学行为,结合数值模拟分析发现:直径为1 mm的钢珠穿透单层CNT薄膜的临界穿透速度约为25 m/s,最大吸能对应的速度约为30 m/s;双层CNT薄膜的临界穿透速度约为40 m/s,最大吸能对应的速度约为60 m/s。与冲击破坏孔洞相比,准静态下CNT薄膜的破坏孔洞边缘更薄,拉伸变形更明显。通过水、润滑油、高真空润滑脂等中间界面改性,可以提升双层CNT薄膜的抗冲击力学性能和吸能效果。研究结果有助于更好地理解CNT薄膜的吸能机理,为防护结构设计提供参考。

     

  • 图  CNT薄膜试样(a)及其表面微观形貌(b)

    Figure  1.  CNT thin film sample (a) and its surface microscopic morphology (b)

    图  准静态压入实验(a)和弹道测试实验(b)布局

    Figure  2.  Layouts of quasi-static injection test (a) and ballistic test (b)

    图  钢球冲击薄膜有限元模型:(a) 1 mm直径钢球模型;(b) 12 mm直径CNT薄膜模型正面

    Figure  3.  Finite element model of a steel ball impacting the thin film: (a) 1 mm diameter steel ball model; (b) front side ofa 12 mm diameter carbon nanotube film model

    图  准静态加载下单、双层CNT薄膜的载荷-位移曲线及相应的侵彻变形过程

    Figure  4.  Load-displacement curves and corresponding penetration deformation process of single- and double-layer CNT film under quasi-static loading

    图  不同添加物影响下双层CNT薄膜的载荷-位移曲线

    Figure  5.  Load-displacement curves of double-layer CNT filmwith different types of additives

    图  不同界面对双层CNT薄膜准静态力学性质的影响:(a)载荷峰值,(b)吸能特性

    Figure  6.  Effect of different interfaces on the quasi-static mechanical properties of the double-layer CNT film:(a) peak load and (b) energy absorption characteristics

    图  冲击单层CNT薄膜(a)和双层CNT薄膜(b)后钢球速度的衰减

    Figure  7.  Velocity attenuation of steel ball after impact of single-layer CNT film (a) and double-layer CNT film (b)

    图  钢球冲击单层(a)和双层(b) CNT薄膜时的吸能特性

    Figure  8.  Energy absorption characteristics of the steel ball impacting the single-layer CNT film (a) and double-layer CNT film (b)

    图  钢球冲击单、双层CNT薄膜的吸能(a)和比吸能(b)对比

    Figure  9.  Comparison of energy absorption (a) and specific energy absorption (b) between single- and double-layer CNT films impacted by steel balls

    图  10  不同中间界面对双层CNT薄膜冲击吸能性能的影响

    Figure  10.  Effect of different additives on the impact energy absorption properties of double-layer CNT films

    图  11  穿透后CNT薄膜试样表面的微观形貌:(a)单层CNT薄膜冲击穿孔形态(16 m/s);(b)单层CNT薄膜准静态穿孔形态(2.67×10−4 m/s);(c)双层CNT薄膜冲击穿孔形态(水,33 m/s);(d)双层CNT薄膜准静态穿孔形态(水,2.67×10−4 m/s);(e)双层CNT薄膜冲击穿孔形态(HVG,35 m/s);(f)双层CNT薄膜准静态穿孔形态(HVG,2.67×10−4 m/s)

    Figure  11.  Microscopic morphology of the penetrated CNT film samples surface: (a) impact perforation morphology of single-layer CNT film (16m/s); (b) quasi-static perforated morphology of single-layer CNT film (2.67×10−4m/s); (c) impact perforation morphology of double-layer CNT film (water, 33 m/s); (d) quasi-static perforated morphology of double-layer CNT film (water, 2.67×10−4 m/s); (e) impact perforation morphology of double-layer CNT film (HVG,35 m/s); (f) quasi-static perforated morphology ofdouble-layer CNT film (HVG, 2.67×10−4 m/s)

    图  12  钢球侵彻速度的衰减情况: (a)模拟结果与实验结果的对比,(b)速度衰减过程的模拟结果

    Figure  12.  Dynamic shock penetration velocity decay of steel balls: (a) comparison between simulation resultsand experimental results; (b) simulation results of the velocity loss process

    图  13  10 m/s速度冲击时薄膜的侵彻模拟结果: (a)背面, (b)侧面

    Figure  13.  Simulation results of film penetration at 10 m/s impact velocity: (a) back view, (b) side view

    图  14  35 m/s速度冲击时薄膜的侵彻模拟结果:(a)背面,(b)侧面

    Figure  14.  Simulation results of film penetration at 35 m/s impact velocity: (a) back view, (b) side view

    表  1  CNT薄膜材料的力学参数

    Table  1.   Mechanical parameters of CNT materials

    E1/MPaE2/MPaE3/MPaμ12μ13μ23G12/MPaG13/MPaG23/MPa
    2067206720670.10.30.31.721.721.72
    下载: 导出CSV

    表  2  CNT薄膜材料的工程弹性常数

    Table  2.   Engineering elastic parameters of CNT materials

    Longitudinal
    tensile
    strength/Pa
    Longitudinal
    compressive
    strength/Pa
    Longitudinal
    shear
    strength/Pa
    Transverse
    tensile
    strength/Pa
    Transverse
    compressive
    strength/Pa
    Transverse
    shear
    strength/Pa
    802 0001000802 0001000
    下载: 导出CSV

    表  3  CNT薄膜材料的损伤演化力学参数

    Table  3.   Mechanical parameters of damage evolution of CNT materials

    Longitudinal tensile fracture energy/
    (kJ·m−2)
    Longitudinal compressive
    fracture energy/
    (kJ·m−2)
    Transverse tensile
    fracture energy/
    (kJ·m−2)
    Transverse compressive fracture energy/
    (kJ·m−2)
    0.010.30.010.3
    下载: 导出CSV
  • [1] ZHANG M, FANG S L, ZAKHIDOV A A, et al. Strong, transparent, multifunctional, carbon nanotube sheets [J]. Science, 2005, 309(5738): 1215–1219. doi: 10.1126/science.1115311
    [2] XU J, LI Y B, XIANG Y, et al. A super energy mitigation nanostructure at high impact speed based on buckyball system [J]. Plos One, 2013, 8(5): e64697. doi: 10.1371/journal.pone.0064697
    [3] WIERZBICKI T. Energy absorption of structures and materials [J]. International Journal of Impact Engineering, 2004, 30(7): 881–882. doi: 10.1016/j.ijimpeng.2003.12.004
    [4] XIE B, LIU Y L, DING Y T, et al. Mechanics of carbon nanotube networks: microstructural evolution and optimal design [J]. Soft Matter, 2011, 7(21): 10039–10047. doi: 10.1039/c1sm06034a
    [5] ANZAR N, HASAN R, TYAGI M, et al. Carbon nanotube: a review on synthesis, properties and plethora of applications in the field of biomedical science [J]. Sensors International, 2020, 1: 10003. doi: 10.1016/j.sintl.2020.100003
    [6] JIANG K L, WANG J P, LI Q Q, et al. Superaligned carbon nanotube arrays, films, and yarns: a road to applications [J]. Advanced Materials, 2011, 23(9): 1154–1161. doi: 10.1002/adma.201003989
    [7] KAUSALA M, ZHANG L C. Energy absorption capacity of carbon nanotubes under ballistic impact [J]. Applied Physics Letters, 2006, 89(12): 123127. doi: 10.1063/1.2356325
    [8] PRABHA P S, RAGAI I G, RAJESH R, et al. FEA analysis of ballistic impact on carbon nanotube bulletproof vest [J]. Materials Today: Proceedings, 2021, 46: 3937–3940. doi: 10.1016/J.MATPR.2021.02.424
    [9] COUR-PALAIS B G, CREWS J L. A multi-shock concept for spacecraft shielding [J]. International Journal of Impact Engineering, 1990, 10(1): 135–146. doi: 10.1016/0734-743X(90)90054-Y
    [10] XIAO K L, LEI X D, CHEN Y Y, et al. Extraordinary impact resistance of carbon nanotube film with crosslinks under micro-ballistic impact [J]. Carbon, 2021, 175: 478–489. doi: 10.1016/j.carbon.2021.01.009
    [11] QU S X, JIANG X R, LI Q W, et al. Developing strong and tough carbon nanotube films by a proper dispersing strategy and enhanced interfacial interactions [J]. Carbon, 2019, 149: 117–124. doi: 10.1016/j.carbon.2019.04.033
    [12] KĘDZIERSKI P, POPŁAWSKI A, GIELETA R, et al. Experimental and numerical investigation of fabric impact behavior [J]. Composites Part B: Engineering, 2015, 69: 452–459. doi: 10.1016/j.compositesb.2014.10.028
    [13] SAKURAI S, KAMADA F, FUTABA D N, et al. Influence of lengths of millimeter-scale single-walled carbon nanotube on electrical and mechanical properties of buckypaper [J]. Nanoscale Research Letters, 2013, 8(1): 546. doi: 10.1186/1556-276X-8-546
    [14] MA Y J, YAO X F, ZHENG Q S, et al. Carbon nanotube films change Poisson’s ratios from negative to positive [J]. Applied Physics Letter. 2010, 97(6): 061909.
    [15] WANG P F, YANG J L, LI X, et al. Modification of the contact surfaces for improving the puncture resistance of laminar structures [J]. Scientific Reports, 2017, 7(1): 16615. doi: 10.1038/s41598-017-06007-3
    [16] WANG P F, ZHANG X, ZHANG H, et al. Energy absorption mechanisms of modified double-aluminum layers under low-velocity impact [J]. International Journal of Applied Mechanics, 2015, 7(6): 1550086. doi: 10.1142/S1758825115500866
    [17] 常晋源, 王德雅, 张磊, 等. 单丝碳纳米管纤维的横向冲击性能研究 [J]. 实验力学, 2021, 36(4): 507–515. doi: 10.7520/1001-4888-20-250

    CHANG J Y, WANG D Y, ZHANG L, et al. Transverse impact properties of single carbon nanotube fibers [J]. Journal of Experimental Mechanics, 2021, 36(4): 507–515. doi: 10.7520/1001-4888-20-250
    [18] DONG J L, SONG X, WANG Z J, et al. Impact resistance of single-layer metallic glass nanofilms to high-velocity micro-particle penetration [J]. Extreme Mechanics Letters, 2021, 44: 101258. doi: 10.1016/j.eml.2021.101258
    [19] TANG F, DONG C, YANG Z, et al. Protective performance and dynamic behavior of composite body armor with shear stiffening gel as buffer material under ballistic impact [J]. Composites Science and Technology, 2022, 218: 109190. doi: 10.1016/j.compscitech.2021.109190
    [20] XUAN H J, HU Y Q, WU Y N, et al. Containment ability of Kevlar 49 composite case under spinning impact [J]. Journal of Aerospace Engineering, 2018, 31(2): 04017096. doi: 10.1061/(ASCE)AS.1943-5525.0000806
    [21] LIU L L, ZHAO Z H, CHEN W, et al. Influence of pre-tension on ballistic impact performance of multi-layer Kevlar 49 woven fabrics for gas turbine engine containment systems [J]. Chinese Journal of Aeronautics, 2018, 31(6): 1273–1286. doi: 10.1016/j.cja.2018.03.021
    [22] WANG Y Q, MIAO Y Y, SWENSON D, et al. Digital element approach for simulating impact and penetration of textiles [J]. International Journal of Impact Engineering, 2010, 37(5): 552–560. doi: 10.1016/j.ijimpeng.2009.10.009
    [23] LIU L L, CAI M, LUO G, et al. Macroscopic numerical simulation method of multi-phase STF-impregnated Kevlar fabrics. part 2: material model and numerical simulation [J]. Composite Structures, 2021, 262: 113662. doi: 10.1016/j.compstruct.2021.113662
    [24] 李清文, 赵静娜, 张骁骅. 碳纳米管纤维的物理性能与宏量制备及其应用 [J]. 纺织学报, 2018, 39(12): 145–151. doi: 10.13475/j.fzxb.20180806607

    LI Q W, ZHAO J N, ZHANG X H. Physical properties and mass preparation and application of carbon nanotube fibers [J]. Journal of Textile Research, 2018, 39(12): 145–151. doi: 10.13475/j.fzxb.20180806607
    [25] 吴昆杰, 张永毅, 勇振中, 等. 碳纳米管纤维的连续制备及高性能化 [J/OL]. 物理化学学报, 2021: 1−25. (2021−01−17) [2021−12−01]. http://kns.cnki.net/kcms/detail/11.1892.o6.20210803.1027.002.html.

    WU K J, ZHANG Y Y, YONG Z Z, et al. Continuous preparation and performance enhancement techniques of carbon nanotube fibers [J/OL]. Acta Physico-Chimica Sinica, 2021: 1−25. (2021−01−17) [2021−12−01]. http://kns.cnki.net/kcms/detail/11.1892.o6.20210803.1027.002.html.
    [26] WANG J N, LUO X G, WU T, et al. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity [J]. Nature Communications, 2014, 5(1): 3848. doi: 10.1038/ncomms4848
    [27] RYU S, CHOU J B, LEE K et al. Direct insulation-to-conduction transformation of adhesive catecholamine for simultaneous increases of electrical conductivity and mechanical strength of CNT fibers [J]. Advanced Materials, 2015, 27(21): 3250–3255. doi: 10.1002/adma.201570141
    [28] CHEN W, HUDSPETH M, GUO Z, et al. Multi-scale experiments on soft body armors under projectile normal impact [J]. International Journal of Impact Engineering, 2017, 108: 63–72. doi: 10.1016/j.ijimpeng.2017.04.018
    [29] HAN B S, XUE XIANG, XU Y J, et al. Preparation of carbon nanotube film with high alignment and elevated density [J]. Carbon, 2017, 122: 496–503. doi: 10.1016/j.carbon.2017.04.072
    [30] XU W, CHEN Y, ZHAN H, et al. High-strength carbon nanotube film from improving alignment and densification [J]. Nano Letters, 2016(2), 16: 946−952.
    [31] ZHAO Y S, MIAO L L, HAO W Z, et al. Two-dimensional carbon nanotube woven highly-stretchable film with strain-induced tunable impacting performance [J]. Carbon, 2022, 189: 539–547. doi: 10.1016/j.carbon.2021.12.065
    [32] WANG Y, GAO Y N, YUE T N, et al. Achieving high-performance and tunable microwave shielding in multi-walled carbon nanotubes/polydimethylsiloxane composites containing liquid metals [J]. Applied Surface Science, 2021, 563: 105255. doi: 10.1016/J.APSUSC.2021.150255
    [33] ZHANG L C, KAUSALA M, XIAO K Q. The intrinsic frictional property of carbon nanotubes [J]. Advanced Materials Research, 2008, 32: 1–4. doi: 10.4028/www.scientific.net/AMR.32.1
    [34] 胡东梅, 黄献聪, 李丹, 等. 碳纳米管薄膜/超高分子量聚乙烯叠层材料的防弹性能 [J]. 东华大学学报(自然科学版), 2018, 44(3): 341–346. doi: 10.3969/j.issn.1671-0444.2018.03.001

    HU D M, HUANG X C, LI D, et al. Bulletproof performance of carbon nanotube film/UHMWPE with multi-layer structure [J]. Journal of Donghua University (Natural Science), 2018, 44(3): 341–346. doi: 10.3969/j.issn.1671-0444.2018.03.001
    [35] HASHIN Z. Failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics, 1980, 47(2): 329–334. doi: 10.1115/1.3153664
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  387
  • HTML全文浏览量:  127
  • PDF下载量:  43
出版历程
  • 收稿日期:  2022-01-28
  • 修回日期:  2022-03-07
  • 录用日期:  2022-03-14
  • 网络出版日期:  2022-07-27
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回