Reliability Optimization Design of Anti-Penetration Perforated Armor
-
摘要: 孔结构装甲在满足抗侵彻性能的同时需实现减重,因而轻量化设计具有工程实际意义。以孔结构装甲的轻量化为设计目标,抗侵彻性能为约束条件,考虑不确定性因素的影响,开展孔结构装甲的可靠性优化设计。样本点采用最优拉丁超立方法设计生成,孔结构装甲抗侵彻仿真的参数化建模及响应计算通过商业软件ANSYS的二次开发实现,引入Kriging代理模型和期望改变量(expected improvement, EI)加点法构建性能函数,最后采用序列优化与可靠性评估方法(sequential optimization and reliabilityassessment, SORA)进行可靠性优化设计。结果表明,可靠性优化后,孔结构装甲在满足抗侵彻性能和相关可靠度指标的前提下,可有效地实现减重11.5%。研究结果可为其他抗侵彻防护结构的可靠性优化设计提供参考。Abstract: Perforated armor can effectively reduce weight while meeting anti-penetration performance. Structural lightweight design of perforated armor has practical engineering significance. Considering the influence of uncertain factors, a reliability optimization design of a perforated armor was realized in this research. In the process of the reliability optimization design, the light weight of the perforated armor was taken as the goal of the design, and the anti-penetration performance was taken as the constraint condition. The optimal Latin hypercube design method was used to generate sample points. Based on a development of the commercial software ANSYS, the parametric modeling and the response calculation of the anti-penetration simulation of the perforated armor were realized. The Kriging surrogate model and the expected improvement maximization method were introduced to construct the performance functions. The sequential optimization and the reliability assessment method were applied in the reliability optimization design of the perforated armor. Under the premise of meeting the anti-penetration performance requirements and having a related reliability indicator of 0.9, the weight of the perforated armor after the reliability optimization can be effectively reduced by 11.5%. The research can provide references for the reliability optimization design of other anti-penetration structures.
-
Key words:
- perforated armor /
- lightweight design /
- Kriging model /
- reliability optimization
-
Component ρ/(kg·m−3) E/GPa G/GPa v A/MPa B/MPa n C $\dot{\varepsilon} $0/s−1 cp/(J·kg−1·K−1) T0/K Tm/K m Target material 7 850 206 80 0.30 1200 1 580 0.175 0.004 0.000 1 450 300 1 800 1.00 Bullet core 7 850 206 80 0.30 1900 1 100 0.065 0.050 0.001 0 477 300 1 800 1.00 Brass jacket 8 960 124 46 0.34 90 292 0.310 0.025 1.000 0 386 300 1 356 1.09 表 2 孔结构装甲可靠性优化设计相关变量的约束范围
Table 2. Ranges of the relevant variables in reliability optimization design of perforated structure armor
R/mm d/mm v/(m∙s−1) $ \theta $/(°) 4.5−6.2 7.8−12.4 834−874 85−95 表 3 最优拉丁超立方法抽取的采样点和响应
Table 3. Sampling points and responses obtained by the optimal Latin hypercube method
R/mm d/mm v/(m·s−1) $ \theta $/(°) v′/(m·s−1) m′/g 6.052 10.200 870.522 94.130 811.129 4.662 5.978 8.600 867.043 86.304 808.016 4.889 5.387 8.400 844.435 93.261 760.791 4.854 4.796 12.200 842.696 86.739 675.821 4.112 4.722 8.800 837.478 85.435 603.861 3.958 4.943 11.800 874.000 87.174 710.546 4.245 5.017 11.600 856.609 90.652 667.470 4.005 5.239 10.800 872.261 92.826 780.641 4.506 5.683 11.200 853.130 88.478 754.275 4.529 5.461 9.200 849.652 85.870 747.881 4.622 4.870 9.800 846.174 91.957 691.675 4.366 5.830 11.000 847.913 93.696 762.888 4.720 5.535 12.000 868.783 89.783 761.734 4.493 4.500 12.400 851.391 91.522 568.453 3.551 6.126 10.400 839.217 89.348 782.666 4.794 5.609 7.800 840.957 88.043 788.874 4.941 5.313 10.600 835.739 92.391 719.739 4.375 5.757 9.000 834.000 91.087 759.182 4.708 6.200 8.200 858.348 95.000 814.127 5.034 4.648 11.400 860.087 85.000 701.905 4.282 5.091 9.400 865.304 88.914 725.571 4.170 5.904 10.000 863.565 90.217 800.931 4.745 5.165 8.000 861.826 94.565 767.436 4.786 4.574 9.600 854.870 87.609 648.105 4.038 表 4 剩余速度响应代理模型构建的新增样本和响应
Table 4. Added samples and responses built by residual velocity response surrogate model
R/mm d/mm v/(m·s−1) $ \theta $/(°) v′/(m·s−1) 4.668 12.400 835.174 91.508 562.223 6.200 12.400 837.169 92.044 779.260 4.500 9.031 843.095 86.100 604.955 4.501 12.399 857.090 88.573 529.787 4.503 9.796 853.839 86.088 619.838 6.200 12.400 837.029 85.000 757.080 表 5 剩余质量响应代理模型构建的新增样本和响应
Table 5. Added samples and responses built by residual mass response surrogate model
R/mm d/mm v/(m·s−1) $ \theta $/(°) m′/g 6.200 12.395 835.626 85.000 4.713 4.500 7.800 873.789 85.000 3.846 4.500 7.800 856.411 88.096 4.159 4.500 12.400 834.180 92.023 3.463 6.200 7.800 834.000 85.000 5.209 4.500 12.400 834.000 94.902 3.448 表 6 校核样本点和结果
Table 6. Check samples and results
R/mm d/mm v/(m·s−1) $ \theta $/(°) v′/(m·s−1) Residual velocity
accuracy checkingm′/g Residual mass
accuracy checkingSur. Sim. AAE/% MAE/(m·s−1) Sur. Sim. AAE/% MAE/g 5.860 11.480 874 91 805.051 805.150 0.58 8.394 4.700 4.650 1.58 0.105 4.500 12.400 850 90 555.406 552.960 3.636 3.531 6.200 8.720 842 87 820.845 814.010 5.116 5.048 4.840 9.640 866 85 698.654 690.260 4.159 4.229 5.180 10.560 834 93 697.718 701.010 4.288 4.329 5.520 7.800 858 95 788.991 793.070 4.933 4.929 Note: Sur. means surrogate model. 表 7 随机变量参数的概率分布信息
Table 7. Probability distribution information of random variables and parameters
Symbol Distribution pattern Mean Variance Variable upper limit Variable lower limit $ R $ Normal distribution ${\,\mu _R}$ 0.02${\,\mu _R}$ 4.5 mm 6.2 mm $ d $ Normal distribution ${\,\mu _d}$ 0.02${\,\mu _d}$ 7.8 mm 12.4 mm $ v $ Normal distribution 854 m/s 17.08 m/s $ \theta $ Normal distribution 90° 1.8° 表 8 孔结构装甲优化参数结果
Table 8. Parameter results of the optimization of perforated structure armor
Variable R/mm d/mm n1 n2 Initial design 6.00 10.00 10 11 Reliability optimization 5.06 7.83 13 15 Note: $ {n_1} $ is the maximum hole quantity in each row; $ {n_2} $ is the maximum hole quantity in each column. 表 9 输出响应和孔结构装甲质量属性
Table 9. Output responses and the quality attributes of perforated structure armor
Responses $v'/({\text{m}\cdot\text{s}^{ {-1} } } )$ $m'/{\text{g} }$ $M/{\text{g} }$ $\sigma /({\text{g}\cdot\text{cm}^{{-2} } } )$ $L_{ \rm{wd} }$/% Initial design 794.460 4.739 331.168 3.31 0 Reliability optimization 739.480 4.557 292.940 2.93 11.50 Note: $ M $is the mass of the perforated armor; $ \sigma $ is the surface density of the perforated armor; $L_{\rm{wd}}$ is the lightweight degree
of the perforated armor. -
[1] CHOCRON S, ANDERSON C E JR, GROSCH D J, et al. Impact of the 7.62 mm APM2 projectile against the edge of a metallic target [J]. International Journal of Impact Engineering, 2001, 25(5): 423–437. doi: 10.1016/S0734-743X(00)00063-4 [2] BEN-MOSHE D, TARSI Y, ROSENBERG G. An armor assembly for armored vehicles: EP 0209221 [P]. 1986. [3] KILIÇ N, BEDIR S, ERDIK A, et al. Ballistic behavior of high hardness perforated armor plates against 7.62 mm armor piercing projectile [J]. Materials & Design, 2014, 63: 427–438. [4] MISHRA B, RAMAKRISHNA B, JENA P K, et al. Experimental studies on the effect of size and shape of holes on damage and microstructure of high hardness armour steel plates under ballistic impact [J]. Materials & Design, 2013, 43: 17–24. [5] RADISAVLJEVIC I, BALOS S, NIKACEVIC M, et al. Optimization of geometrical characteristics of perforated plates [J]. Materials & Design, 2013, 49: 81–89. [6] 王郑. 间隙对穿孔装甲抗弹性能影响的数值分析 [J]. 科技创新与生产力, 2016(2): 87–89. doi: 10.3969/j.issn.1674-9146.2016.02.087WANG Z. Numerical analysis about the influence of intervals on the ballistic performance of perforated armor [J]. Sci-Tech Innovation and Productivity, 2016(2): 87–89. doi: 10.3969/j.issn.1674-9146.2016.02.087 [7] 王建波, 闫慧敏, 范秉源, 等. 弹着点对多孔钢板抗弹性能影响的数值模拟 [J]. 兵器材料科学与工程, 2010, 33(6): 73–75. doi: 10.3969/j.issn.1004-244X.2010.06.022WANG J B, YAN H M, FAN B Y, et al. Numerical simulation analysis about the influence of the hitting position on the ballistic performance of the multi-hole steel plate [J]. Ordnance Material Science and Engineering, 2010, 33(6): 73–75. doi: 10.3969/j.issn.1004-244X.2010.06.022 [8] 胡丽萍, 王智慧, 满红, 等. 孔结构间隙复合装甲位置效应研究 [J]. 兵器材料科学与工程, 2010, 33(1): 89–90. doi: 10.3969/j.issn.1004-244X.2010.01.025HU L P, WANG Z H, MAN H, et al. Study on the spot effect of spaced composite armor with multi-holes [J]. Ordnance Material Science and Engineering, 2010, 33(1): 89–90. doi: 10.3969/j.issn.1004-244X.2010.01.025 [9] 秦庆华, 崔天宁, 施前, 等. 孔结构金属装甲抗弹能力的数值模拟 [J]. 高压物理学报, 2018, 32(5): 055105.QIN Q H, CUI T N, SHI Q, et al. Numerical study on ballistic resistance of metal perforated armor to projectile impact [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 055105. [10] 肖红亮, 李晓源, 时捷, 等. 倾角效应对高强度钢板抗弹性能的影响 [J]. 兵器材料科学与工程, 2011, 34(6): 36–40.XIAO H L, LI X Y, SHI J, et al. Influence of obliquity effect on the ballistic performance of high strength steel plate [J]. Ordnance Material Science and Engineering, 2011, 34(6): 36–40. [11] 李换芝. 倾角穿孔装甲对14.5 mm穿燃弹防护性能的影响 [J]. 科技创新与生产力, 2016(2): 90–91, 94. doi: 10.3969/j.issn.1674-9146.2016.02.090LI H Z. Influence of oblique perforated armor on the protective performance of the 14.5 mm armor-piercing incendiary [J]. Sci-Tech Innovation and Productivity, 2016(2): 90–91, 94. doi: 10.3969/j.issn.1674-9146.2016.02.090 [12] 彭吉祥, 崔天宁, 金永喜, 等. 斜孔结构装甲设计及抗弹性能研究 [J]. 应用力学学报, 2021, 38(3): 893–901.PENG J X, CUI T N, JIN Y X, et al. Research on design and ballistic resistance of perforated armor with oblique holes [J]. Chinese Journal of Applied Mechanics, 2021, 38(3): 893–901. [13] BURIAN W, ŻOCHOWSKI P, GMITRZUK M, et al. Protection effectiveness of perforated plates made of high strength steel [J]. International Journal of Impact Engineering, 2019, 126: 27–39. doi: 10.1016/j.ijimpeng.2018.12.006 [14] CUI T N, QIN Q H, YAN W M, et al. Ballistic resistance of novel amorphous-alloy-reinforced perforated armor [J]. Acta Mechanica Solida Sinica, 2021, 34(1): 12–26. doi: 10.1007/s10338-020-00180-1 [15] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics. The Hague, 1983: 541−547. [16] 张冬冬, 郭勤涛. Kriging响应面代理模型在有限元模型确认中的应用 [J]. 振动与冲击, 2013, 32(9): 187–191. doi: 10.3969/j.issn.1000-3835.2013.09.036ZHANG D D, GUO Q T. Application of Kriging response surface in finite element model validation [J]. Journal of Vibration and Shock, 2013, 32(9): 187–191. doi: 10.3969/j.issn.1000-3835.2013.09.036 [17] 周宁. ANSYS-APDL高级工程应用实例分析与二次开发 [M]. 北京: 中国水利水电出版社, 2007. [18] JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions [J]. Journal of Global Optimization, 1998, 13(4): 455–492. doi: 10.1023/A:1008306431147 [19] SIMPSON T W, POPLINSKI J D, KOCH P N, et al. Metamodels for computer-based engineering design: survey and recommendations [J]. Engineering with Computers, 2001, 17(2): 129–150. doi: 10.1007/PL00007198 [20] KRIGE D G. A statistical approach to some basic mine valuation problems on the Witwatersrand [J]. Journal of the Southern African Institute of Mining and Metallurgy, 1951, 52(6): 119–139. [21] 郭领. 孔结构金属装甲抗小口径穿甲弹的厚度效应 [D]. 南京: 南京理工大学, 2012.GUO L. The thickness effect of metal armor with poerstructure penetrating by Small caliber projectile [D]. Nanjing: Nanjing University of Science & Technology, 2012. [22] STANAG N. Protection levels for occupants of logistic and light armoured vehicles [S]. 2004. [23] DU X P, CHEN W. Sequential optimization and reliability assessment method for efficient probabilistic design [J]. Journal of Mechanical Design, 2004, 126(2): 225–233. doi: 10.1115/1.1649968 [24] AOUES Y, CHATEAUNEUF A. Benchmark study of numerical methods for reliability-based design optimization [J]. Structural and Multidisciplinary Optimization, 2010, 41(2): 277–294. doi: 10.1007/s00158-009-0412-2 [25] HUANG Z L, JIANG C, ZHOU Y S, et al. An incremental shifting vector approach for reliability-based design optimization [J]. Structural and Multidisciplinary Optimization, 2016, 53(3): 523–543. doi: 10.1007/s00158-015-1352-7 [26] ZHANG Z, DENG W, JIANG C. Sequential approximate reliability-based design optimization for structures with multimodal random variables [J]. Structural and Multidisciplinary Optimization, 2020, 62(2): 511–528. doi: 10.1007/s00158-020-02507-5