Optimization of Charging Structure of Surrounding Holes in Smooth Blasting of Deep Diversion Tunnel
-
摘要: 隧洞爆破周边孔不连续装药结构是影响光面爆破效果的重要因素之一。基于秘鲁圣加旺Ⅲ水电站引水隧洞工程,针对现场爆破施工方案超挖现象,采用ANSYS/LS-DYNA建立周边孔不连续装药结构数值计算模型,分析了不同药卷间距下周边孔模型的围岩爆破效果;选择最优的周边孔装药结构设计方案开展现场爆破试验,对比验证了装药结构设计对隧洞超挖的改善效果。结果表明:当周边孔药卷间距小于350 mm时,爆破不会出现欠挖现象,且超挖范围随着药卷间距的增大而减小;当周边孔药卷间距大于400 mm时,爆破效果开始出现欠挖现象,且随着药卷间距的增大,欠挖范围增大。通过数值模型对比分析得出周边孔的最优药卷间距为350 mm,采用优化后的爆破设计方案进行爆破试验,得到的超挖范围明显减小,最大超挖距离由43 cm降至30 cm。Abstract: The distance between explosive roll of surrounding hole is one of the important factors affecting the effect of smooth blasting. Based on the diversion system project of hydropower station in Peru, this paper introduced the blasting design scheme of the project and evaluated the blasting effect. The peripheral hole model under different charge structures was established by ANSYS/LS-DYNA to analyze the blasting effect of the surrounding hole model on rock. At last, the optimal design scheme of surrounding hole is selected for blasting test, so as to improve the over excavation and under-excavation phenomenon of the project. The results show that when the distance is less than 350 mm, the under-excavation will not appear and the over excavation range decreases with the increase of the distance between the surrounding holes. When the distance is more than 400 mm, the under-excavation begins to appear in the blasting effect and increases with the increase of the distance. Through the comparative analysis of the numerical model, it is concluded that the optimal charge spacing of the surrounding hole is 350 mm. The optimal design scheme is adopted for the blasting test. It is obtained that the overbreak range is significantly reduced, and the maximum distance is reduced from 43 cm to 30 cm.
-
表 1 爆破参数
Table 1. Blasting parameters
Blast hole Hole type Blast hole depth/m Number Single hole charge/kg Empty hole Vertical hole 3.2 4 0 Cut hole Vertical hole 3.0 13 1.23 Auxiliary hole Vertical hole 3.0 56 1.58 Peripheral hole Vertical hole 3.0 27 2.02 Bottom hole Vertical hole 3.0 8 2.82 表 2 岩石材料参数
Table 2. Parameters of rock
$\,\rho $/(g·cm−3) G/GPa T/MPa pc/MPa pl/GPa $\,\mu $l $\,\mu $c fc/MPa A B 2.84 11.57 8 48.8 1.2 0.0120 0.0025 146.5 0.3 2.5 C N Smax D1 D2 Efmin K1/GPa K2/GPa K3/GPa 0.0097 0.79 15 0.04 1 0.01 12 25 42 表 3 空气材料参数
Table 3. Parameters of air
$\,\rho $/(kg·m−3) C0 C1 C2 C3 C4 C5 C6 e0/(J·m−3) 1.29 0 0 0 0 0.4 0.4 0 2.5×105 表 4 炮泥的主要参数
Table 4. Main parameters of blasting mud
$\,\rho $/(g·cm−3) E/GPa $\,\nu$ 1.8 214 0.3 表 5 炸药材料参数
Table 5. Parameters of explosive
$\,\rho $/(g·cm−3) Ae/GPa Be/GPa R1 R2 $\omega $ E0/GPa V0/cm3 1.25 214 18.2 4.2 0.9 0.15 4.19 1.00 -
[1] 朱荣华, 林云, 徐学勇, 等. 空气间隔装药光面爆破技术探讨 [J]. 爆破, 2004, 21(3): 32–33. doi: 10.3963/j.issn.1001-487X.2004.03.010ZHU R H, LIN Y, XU X Y, et al. Analysis of smooth blasting technology for air-deck charge [J]. Blasting, 2004, 21(3): 32–33. doi: 10.3963/j.issn.1001-487X.2004.03.010 [2] 刘文波, 程康, 沈伟, 等. 空气间隔装药光面爆破在公路隧道掘进中的应用 [J]. 土工基础, 2009, 23(4): 37–39. doi: 10.3969/j.issn.1004-3152.2009.04.011LIU W B, CHENG K, SHEN W, et al. Application of air-decked charge and smooth blasting in the excavation for expressway tunnel [J]. Soil Engineering and Foundation, 2009, 23(4): 37–39. doi: 10.3969/j.issn.1004-3152.2009.04.011 [3] 周游, 程康, 陈世华. 空气间隔装药技术在水布垭地下厂房开挖中的应用 [J]. 爆破, 2005, 22(2): 56–57. doi: 10.3963/j.issn.1001-487X.2005.02.017ZHOU Y, CHENG K, CHEN S H. Application of air-decked charge in the excavation for Shuibuya underground workshop [J]. Blasting, 2005, 22(2): 56–57. doi: 10.3963/j.issn.1001-487X.2005.02.017 [4] REN F Y, SOW T A M, HE R X, et al. Optimization and application of blasting parameters based on the “pushing-wall” mechanism [J]. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(10): 879–885. doi: 10.1007/s12613-012-0642-y [5] 于世杰, 吕斌, 李海洋, 等. 间隔装药技术降低爆破振动的实践研究 [J]. 现代矿业, 2021, 37(6): 100–102. doi: 10.3969/j.issn.1674-6082.2021.06.027YU S J, LYU B, LI H Y, et al. Practical research on reducing blasting vibration by interval charge technology [J]. Modern Mining, 2021, 37(6): 100–102. doi: 10.3969/j.issn.1674-6082.2021.06.027 [6] 张迅. 光面爆破不耦合装药参数优化的试验研究 [J]. 工程爆破, 2019, 25(6): 27–31. doi: 10.3969/j.issn.1006-7051.2019.06.005ZHANG X. Experimental study on parameter optimization of deoupled charge in smooth blasting [J]. Engineering Blasting, 2019, 25(6): 27–31. doi: 10.3969/j.issn.1006-7051.2019.06.005 [7] SUN P C, LU W B, ZHOU J R, et al. Comparison of dominant frequency attenuation of blasting vibration for different charge structures [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(2): 448–459. doi: 10.1016/J.JRMGE.2021.07.002 [8] 程俊飞. 公路隧道裂隙围岩固水气三相不耦合爆破参数优化及应用 [D]. 重庆: 重庆大学, 2017: 53−78.CHENG J F. Parameter optimization and application of solid water gas three phase decoupling charge in fractured surrounding rock of highway tunnel [D]. Chongqing: Chongqing University, 2017: 53−78. [9] 刘江超, 高文学, 张声辉. 隧道掘进周边孔间隔装药结构选取及优化 [J]. 爆破, 2021, 38(3): 38–44, 112. doi: 10.3963/j.issn.1001-487X.2021.03.007LIU J C, GAO W X, ZHANG S H. Selection and optimization of interval charge structure of surrounding holes in tunnel excavation blasting [J]. Blasting, 2021, 38(3): 38–44, 112. doi: 10.3963/j.issn.1001-487X.2021.03.007 [10] LENG Z D, FAN Y, GAO Q D, et al. Evaluation and optimization of blasting approaches to reducing oversize boulders and toes in open-pit mine [J]. International Journal of Mining Science and Technology, 2020, 30(3): 373–380. doi: 10.1016/j.ijmst.2020.03.010 [11] 黄志强, 崔正宇, 刘夺, 等. 双层周边孔护壁爆破在软弱破碎围岩的应用研究 [J]. 爆破, 2022, 39(1): 75–82. doi: 10.3963/j.issn.1001-487X.2022.01.011HUANG Z Q, CUI Z Y, LIU D, et al. Application of casing pipe charge and double-layer perimeter holes on controlled contour blasting in soft fractured surrounding rock [J]. Blasting, 2022, 39(1): 75–82. doi: 10.3963/j.issn.1001-487X.2022.01.011 [12] 杨建辉, 胡东荣, 朱晨鸿, 等. 周边眼聚能爆破参数数值模拟研究 [J]. 煤炭科学技术, 2019, 47(1): 187–192. doi: 10.13199/j.cnki.cst.2019.01.026YANG J H, HU D R, ZHU C H, et al. Study on numerical simulation on shaped charge blasting parameters of peripheral holes [J]. Coal Science and Technology, 2019, 47(1): 187–192. doi: 10.13199/j.cnki.cst.2019.01.026 [13] YUAN W, WANG W, SU X B, et al. Experimental and numerical study on the effect of water-decoupling charge structure on the attenuation of blasting stress [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 124: 104133. doi: 10.1016/j.ijrmms.2019.104133 [14] 杨潘磊, 高峰. 矿山掘进爆破周边孔轴向间隔装药数值模拟及应用 [J]. 现代矿业, 2020, 36(6): 79–82, 86. doi: 10.3969/j.issn.1674-6082.2020.06.020YANG P L, GAO F. Numerical simulation and application of air-decked charge in periphery hole of mine excavation [J]. Modern Mining, 2020, 36(6): 79–82, 86. doi: 10.3969/j.issn.1674-6082.2020.06.020 [15] 中华人民共和国国家发展和改革委员会. 水工建筑物岩石基础开挖工程施工技术规范: DL/T 5389—2007 [S]. 北京: 中国标准出版社, 2007.National Development and Reform Commission. Construction technical specifications on rock-foundation excavating engineering of hydraulic structures: DL/T 5389—2007 [S]. Beijing: Standards Press of China, 2007. [16] 中华人民共和国水利部. 水工建筑物地下开挖工程施工规范: SL 378—2007 [S]. 南京: 江苏人民出版社, 2008.Ministry of Water Resources of the People’s Republic of China. Construction specifications on underground excavating engineering of hydraulic structures: SL 378—2007 [S]. Nanjing: Jiangsu People’s Publishing House, 2008.