深埋引水隧洞光面爆破周边孔装药结构优化试验研究

赵晓明 杨玉民 蒋楠 蔡忠伟 欧阳松

赵晓明, 杨玉民, 蒋楠, 蔡忠伟, 欧阳松. 深埋引水隧洞光面爆破周边孔装药结构优化试验研究[J]. 高压物理学报, 2022, 36(4): 045301. doi: 10.11858/gywlxb.20220503
引用本文: 赵晓明, 杨玉民, 蒋楠, 蔡忠伟, 欧阳松. 深埋引水隧洞光面爆破周边孔装药结构优化试验研究[J]. 高压物理学报, 2022, 36(4): 045301. doi: 10.11858/gywlxb.20220503
ZHAO Xiaoming, YANG Yumin, JIANG Nan, CAI Zhongwei, OUYANG Song. Optimization of Charging Structure of Surrounding Holes in Smooth Blasting of Deep Diversion Tunnel[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 045301. doi: 10.11858/gywlxb.20220503
Citation: ZHAO Xiaoming, YANG Yumin, JIANG Nan, CAI Zhongwei, OUYANG Song. Optimization of Charging Structure of Surrounding Holes in Smooth Blasting of Deep Diversion Tunnel[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 045301. doi: 10.11858/gywlxb.20220503

深埋引水隧洞光面爆破周边孔装药结构优化试验研究

doi: 10.11858/gywlxb.20220503
基金项目: 国家自然科学基金(41807265,41972286);中国水利电力对外有限公司项目(CWE-GJ-296/20)
详细信息
    作者简介:

    赵晓明(1973-),男,本科,高级工程师,主要从事水利水电工程施工及项目管理研究.E-mail:zhao_xiaoming1@ctg.com.cn

    通讯作者:

    蒋 楠(1986-),男,博士,副教授,主要从事隧道工程稳定性研究. E-mail:jiangnan@cug.edu.cn

  • 中图分类号: O382; TU45

Optimization of Charging Structure of Surrounding Holes in Smooth Blasting of Deep Diversion Tunnel

  • 摘要: 隧洞爆破周边孔不连续装药结构是影响光面爆破效果的重要因素之一。基于秘鲁圣加旺Ⅲ水电站引水隧洞工程,针对现场爆破施工方案超挖现象,采用ANSYS/LS-DYNA建立周边孔不连续装药结构数值计算模型,分析了不同药卷间距下周边孔模型的围岩爆破效果;选择最优的周边孔装药结构设计方案开展现场爆破试验,对比验证了装药结构设计对隧洞超挖的改善效果。结果表明:当周边孔药卷间距小于350 mm时,爆破不会出现欠挖现象,且超挖范围随着药卷间距的增大而减小;当周边孔药卷间距大于400 mm时,爆破效果开始出现欠挖现象,且随着药卷间距的增大,欠挖范围增大。通过数值模型对比分析得出周边孔的最优药卷间距为350 mm,采用优化后的爆破设计方案进行爆破试验,得到的超挖范围明显减小,最大超挖距离由43 cm降至30 cm。

     

  • 图  工程概况

    Figure  1.  Project overview

    图  爆破效果

    Figure  2.  Blasting effect drawing

    图  数值模型

    Figure  3.  Numerical model

    图  围岩截面示意图

    Figure  4.  Schematic of surrounding rock section

    图  截面B上的围岩损伤云图

    Figure  5.  Damage nephogram of rock on section B

    图  30.00 ms时截面B上的围岩损伤范围

    Figure  6.  Damage range of rock on section B at 30.00 ms

    图  截面A上的围岩损伤云图

    Figure  7.  Damage nephogram of rock on section A

    图  30.00 ms时截面A上的围岩损伤范围

    Figure  8.  Damage range of rock on section A at 30.00 ms

    图  围岩截面示意图

    Figure  9.  Schematic of surrounding rock section

    图  10  截面C上的围岩损伤对比

    Figure  10.  Comparison of surrounding rock damage on section C

    图  11  截面D上的围岩损伤对比

    Figure  11.  Comparison of surrounding rock damage on section D

    图  12  截面E上的围岩损伤对比

    Figure  12.  Comparison of surrounding rock damage on section E

    图  13  优化后的爆破效果

    Figure  13.  Effect drawing of optimized blasting

    表  1  爆破参数

    Table  1.   Blasting parameters

    Blast holeHole typeBlast hole depth/mNumberSingle hole charge/kg
    Empty holeVertical hole3.240
    Cut holeVertical hole3.0131.23
    Auxiliary holeVertical hole3.0561.58
    Peripheral holeVertical hole3.0272.02
    Bottom holeVertical hole3.082.82
    下载: 导出CSV

    表  2  岩石材料参数

    Table  2.   Parameters of rock

    $\,\rho $/(g·cm−3)G/GPaT/MPapc/MPapl/GPa$\,\mu $l$\,\mu $cfc/MPaAB
    2.8411.57848.81.20.01200.0025146.50.32.5
    CNSmaxD1D2EfminK1/GPaK2/GPaK3/GPa
    0.00970.79150.0410.01122542
    下载: 导出CSV

    表  3  空气材料参数

    Table  3.   Parameters of air

    $\,\rho $/(kg·m−3)C0C1C2C3C4C5C6e0/(J·m−3)
    1.2900000.40.402.5×105
    下载: 导出CSV

    表  4  炮泥的主要参数

    Table  4.   Main parameters of blasting mud

    $\,\rho $/(g·cm−3)E/GPa$\,\nu$
    1.82140.3
    下载: 导出CSV

    表  5  炸药材料参数

    Table  5.   Parameters of explosive

    $\,\rho $/(g·cm−3)Ae/GPaBe/GPaR1R2$\omega $E0/GPaV0/cm3
    1.2521418.24.20.90.154.191.00
    下载: 导出CSV
  • [1] 朱荣华, 林云, 徐学勇, 等. 空气间隔装药光面爆破技术探讨 [J]. 爆破, 2004, 21(3): 32–33. doi: 10.3963/j.issn.1001-487X.2004.03.010

    ZHU R H, LIN Y, XU X Y, et al. Analysis of smooth blasting technology for air-deck charge [J]. Blasting, 2004, 21(3): 32–33. doi: 10.3963/j.issn.1001-487X.2004.03.010
    [2] 刘文波, 程康, 沈伟, 等. 空气间隔装药光面爆破在公路隧道掘进中的应用 [J]. 土工基础, 2009, 23(4): 37–39. doi: 10.3969/j.issn.1004-3152.2009.04.011

    LIU W B, CHENG K, SHEN W, et al. Application of air-decked charge and smooth blasting in the excavation for expressway tunnel [J]. Soil Engineering and Foundation, 2009, 23(4): 37–39. doi: 10.3969/j.issn.1004-3152.2009.04.011
    [3] 周游, 程康, 陈世华. 空气间隔装药技术在水布垭地下厂房开挖中的应用 [J]. 爆破, 2005, 22(2): 56–57. doi: 10.3963/j.issn.1001-487X.2005.02.017

    ZHOU Y, CHENG K, CHEN S H. Application of air-decked charge in the excavation for Shuibuya underground workshop [J]. Blasting, 2005, 22(2): 56–57. doi: 10.3963/j.issn.1001-487X.2005.02.017
    [4] REN F Y, SOW T A M, HE R X, et al. Optimization and application of blasting parameters based on the “pushing-wall” mechanism [J]. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(10): 879–885. doi: 10.1007/s12613-012-0642-y
    [5] 于世杰, 吕斌, 李海洋, 等. 间隔装药技术降低爆破振动的实践研究 [J]. 现代矿业, 2021, 37(6): 100–102. doi: 10.3969/j.issn.1674-6082.2021.06.027

    YU S J, LYU B, LI H Y, et al. Practical research on reducing blasting vibration by interval charge technology [J]. Modern Mining, 2021, 37(6): 100–102. doi: 10.3969/j.issn.1674-6082.2021.06.027
    [6] 张迅. 光面爆破不耦合装药参数优化的试验研究 [J]. 工程爆破, 2019, 25(6): 27–31. doi: 10.3969/j.issn.1006-7051.2019.06.005

    ZHANG X. Experimental study on parameter optimization of deoupled charge in smooth blasting [J]. Engineering Blasting, 2019, 25(6): 27–31. doi: 10.3969/j.issn.1006-7051.2019.06.005
    [7] SUN P C, LU W B, ZHOU J R, et al. Comparison of dominant frequency attenuation of blasting vibration for different charge structures [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(2): 448–459. doi: 10.1016/J.JRMGE.2021.07.002
    [8] 程俊飞. 公路隧道裂隙围岩固水气三相不耦合爆破参数优化及应用 [D]. 重庆: 重庆大学, 2017: 53−78.

    CHENG J F. Parameter optimization and application of solid water gas three phase decoupling charge in fractured surrounding rock of highway tunnel [D]. Chongqing: Chongqing University, 2017: 53−78.
    [9] 刘江超, 高文学, 张声辉. 隧道掘进周边孔间隔装药结构选取及优化 [J]. 爆破, 2021, 38(3): 38–44, 112. doi: 10.3963/j.issn.1001-487X.2021.03.007

    LIU J C, GAO W X, ZHANG S H. Selection and optimization of interval charge structure of surrounding holes in tunnel excavation blasting [J]. Blasting, 2021, 38(3): 38–44, 112. doi: 10.3963/j.issn.1001-487X.2021.03.007
    [10] LENG Z D, FAN Y, GAO Q D, et al. Evaluation and optimization of blasting approaches to reducing oversize boulders and toes in open-pit mine [J]. International Journal of Mining Science and Technology, 2020, 30(3): 373–380. doi: 10.1016/j.ijmst.2020.03.010
    [11] 黄志强, 崔正宇, 刘夺, 等. 双层周边孔护壁爆破在软弱破碎围岩的应用研究 [J]. 爆破, 2022, 39(1): 75–82. doi: 10.3963/j.issn.1001-487X.2022.01.011

    HUANG Z Q, CUI Z Y, LIU D, et al. Application of casing pipe charge and double-layer perimeter holes on controlled contour blasting in soft fractured surrounding rock [J]. Blasting, 2022, 39(1): 75–82. doi: 10.3963/j.issn.1001-487X.2022.01.011
    [12] 杨建辉, 胡东荣, 朱晨鸿, 等. 周边眼聚能爆破参数数值模拟研究 [J]. 煤炭科学技术, 2019, 47(1): 187–192. doi: 10.13199/j.cnki.cst.2019.01.026

    YANG J H, HU D R, ZHU C H, et al. Study on numerical simulation on shaped charge blasting parameters of peripheral holes [J]. Coal Science and Technology, 2019, 47(1): 187–192. doi: 10.13199/j.cnki.cst.2019.01.026
    [13] YUAN W, WANG W, SU X B, et al. Experimental and numerical study on the effect of water-decoupling charge structure on the attenuation of blasting stress [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 124: 104133. doi: 10.1016/j.ijrmms.2019.104133
    [14] 杨潘磊, 高峰. 矿山掘进爆破周边孔轴向间隔装药数值模拟及应用 [J]. 现代矿业, 2020, 36(6): 79–82, 86. doi: 10.3969/j.issn.1674-6082.2020.06.020

    YANG P L, GAO F. Numerical simulation and application of air-decked charge in periphery hole of mine excavation [J]. Modern Mining, 2020, 36(6): 79–82, 86. doi: 10.3969/j.issn.1674-6082.2020.06.020
    [15] 中华人民共和国国家发展和改革委员会. 水工建筑物岩石基础开挖工程施工技术规范: DL/T 5389—2007 [S]. 北京: 中国标准出版社, 2007.

    National Development and Reform Commission. Construction technical specifications on rock-foundation excavating engineering of hydraulic structures: DL/T 5389—2007 [S]. Beijing: Standards Press of China, 2007.
    [16] 中华人民共和国水利部. 水工建筑物地下开挖工程施工规范: SL 378—2007 [S]. 南京: 江苏人民出版社, 2008.

    Ministry of Water Resources of the People’s Republic of China. Construction specifications on underground excavating engineering of hydraulic structures: SL 378—2007 [S]. Nanjing: Jiangsu People’s Publishing House, 2008.
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  1305
  • HTML全文浏览量:  492
  • PDF下载量:  35
出版历程
  • 收稿日期:  2022-01-17
  • 修回日期:  2022-02-23
  • 网络出版日期:  2022-05-16
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回