高温高应变率下ZL101A铝合金的流变应力特征与本构模型

张延泽 秦健 孟祥尧 刘元凯 文彦博 黄瑞源

张延泽, 秦健, 孟祥尧, 刘元凯, 文彦博, 黄瑞源. 高温高应变率下ZL101A铝合金的流变应力特征与本构模型[J]. 高压物理学报, 2022, 36(3): 034105. doi: 10.11858/gywlxb.20210923
引用本文: 张延泽, 秦健, 孟祥尧, 刘元凯, 文彦博, 黄瑞源. 高温高应变率下ZL101A铝合金的流变应力特征与本构模型[J]. 高压物理学报, 2022, 36(3): 034105. doi: 10.11858/gywlxb.20210923
ZHANG Yanze, QIN Jian, MENG Xiangyao, LIU Yuankai, WEN Yanbo, HUANG Ruiyuan. Flow Stress Characteristics and Constitutive Model of ZL101A Aluminum Alloy under High Temperature and High Strain Rate[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 034105. doi: 10.11858/gywlxb.20210923
Citation: ZHANG Yanze, QIN Jian, MENG Xiangyao, LIU Yuankai, WEN Yanbo, HUANG Ruiyuan. Flow Stress Characteristics and Constitutive Model of ZL101A Aluminum Alloy under High Temperature and High Strain Rate[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 034105. doi: 10.11858/gywlxb.20210923

高温高应变率下ZL101A铝合金的流变应力特征与本构模型

doi: 10.11858/gywlxb.20210923
基金项目: 国家自然科学基金(12172178,11802001);装备预研基金(614260404021801);中国空气动力研究与发展中心超高速碰撞中心开放基金(20200203)
详细信息
    作者简介:

    张延泽(1993-),男,硕士,主要从事冲击动力学研究. E-mail:yzzhang@njust.edu.cn

    通讯作者:

    黄瑞源(1984-),男,博士,研究员,主要从事爆炸力学与冲击动力学研究.E-mail:huangruiyuan1984@163.com

  • 中图分类号: O346.5

Flow Stress Characteristics and Constitutive Model of ZL101A Aluminum Alloy under High Temperature and High Strain Rate

  • 摘要: 采用分离式霍普金森压杆系统和高温设备对ZL101A铝合金进行了常温和高温下的动态压缩实验,得到了应变率范围为2900~6100 s−1、温度范围为20~600 ℃的动态压缩应力-应变曲线。实验结果表明:ZL101A铝合金具有应变率硬化效应,并且随着温度的升高,应变率硬化效应减弱;ZL101A铝合金在不同应变率下均存在明显的温度软化效应,且随着温度的升高,塑性变形引起的绝热温升使热软化作用增强。为了得到应变率和温度对材料流变应力的影响,将应变率效应和温度效应进行解耦,得到一种适用于ZL101A铝合金材料的动态本构模型。对比模型预测结果与实验数据发现,建立的本构模型可以很好地描述ZL101A铝合金的流变应力特征。

     

  • 图  SHPB装置示意图

    Figure  1.  Schematic diagram of the SHPB device

    图  初始温度为20 ℃、应变率为3000 s−1时试样的应力-应变关系

    Figure  2.  Stress-strain relation of the specimen with the initial temperature of 20 ℃ and strain rate of 3000 s−1

    图  实验后试件的变形情况

    Figure  3.  Deformation of the specimens after the experiments

    图  不同初始温度下ZL101A铝合金塑性阶段的应力-应变关系

    Figure  4.  Dynamic plastic stress-strain curves of ZL101A aluminium alloy at different initial temperatures

    图  不同温度和应变率条件下ZL101A铝合金的动态屈服强度和切线模量

    Figure  5.  Dynamic yield strengthes and tangent moduli of ZL101A aluminium alloy at different temperatures and strain rates

    图  应变率约为4000 s−1时不同温度下动态压缩实验回收的ZL101A铝合金显微结构

    Figure  6.  Microstructure of recovered ZL101A aluminium alloy after the dynamic experiments at different temperatures with the strain rate of about 4000 s−1

    图  依据实验得到的动态屈服强度获得的$ {f_1}\left( {{T^*}} \right) $$ {f_2}\left( {{T^*}} \right) $函数的拟合结果

    Figure  7.  Fitting results of functions $ {f_1}\left( {{T^*}} \right) $ and $ {f_2}\left( {{T^*}} \right) $ according to experimental dynamic yield strength data

    图  依据实验得到的切线模量获得的$ {f_3}\left( {{T^*}} \right) $$ {f_4}\left( {{T^*}} \right) $函数的拟合结果

    Figure  8.  Fitting results of functions $ {f_3}\left( {{T^*}} \right) $ and $ {f_4}\left( {{T^*}} \right) $ according to experimental tangent modulus data

    图  不同温度和应变率下实验结果与模型预测结果对比

    Figure  9.  Comparison of experimental results and model predictions at different temperatures and strain rates

    表  1  本构模型中的材料参数

    Table  1.   Material parameters in the constitutive model

    A1B1C1D1A2B2C2D2
    0.98586−0.64661−1.26×1030.670080.01931−0.59602−0.049521.57845
    下载: 导出CSV
  • [1] HU M D, WANG T T, FANG H, et al. Modeling of gas porosity and microstructure formation during dendritic and eutectic solidification of ternary Al-Si-Mg alloys [J]. Journal of Materials Science & Technology, 2021, 76: 76–85.
    [2] ZHANG M S, LIU K L, WANG B, et al. Accelerating pore nucleation and eutectic Si growth kinetics by increasing Cu and Sc for Al-Si-Mg alloys: in-situ observation [J]. Journal of Alloys and Compounds, 2021, 869: 159173. doi: 10.1016/j.jallcom.2021.159173
    [3] ZHU B W, ZANELLA C. Influence of Fe-rich intermetallics and their segregation on anodising properties of Al-Si-Mg rheocast alloys [J]. Surface and Coatings Technology, 2021, 422: 127570. doi: 10.1016/j.surfcoat.2021.127570
    [4] SHAH A W, HA S H, KIM B H, et al. Effect of Si addition on flow behavior in Al-Mg and Al-Mg-Si molten alloys [J]. Metallurgical and Materials Transactions A, 2020, 51(12): 6670–6678. doi: 10.1007/s11661-020-06052-0
    [5] 易湘斌, 张俊喜, 李宝栋, 等. 高温、高应变率下TB6钛合金的动态压缩性能 [J]. 稀有金属材料与工程, 2019, 48(4): 1220–1224.

    YI X B, ZHANG J X, LI B D, et al. Dynamic compressive mechanical properties of TB6 titanium alloy under high temperature and high strain rate [J]. Rare Metal Materials and Engineering, 2019, 48(4): 1220–1224.
    [6] 武永甫, 李淑慧, 侯波, 等. 铝合金7075-T651动态流变应力特征及本构模型 [J]. 中国有色金属学报, 2013, 23(3): 658–665.

    WU Y F, LI S H, HOU B, et al. Dynamic flow stress characteristics and constitutive model of aluminum 7075-T651 [J]. The Chinese Journal of Nonferrous Metals, 2013, 23(3): 658–665.
    [7] WANG X Y, HUANG C Z, ZOU B, et al. Dynamic behavior and a modified Johnson-Cook constitutive model of Inconel 718 at high strain rate and elevated temperature [J]. Materials Science and Engineering: A, 2013, 580: 385–390. doi: 10.1016/j.msea.2013.05.062
    [8] 王运, 张昌明, 张昱. 航空Al7050合金的静动态力学特性研究及JC本构模型构建 [J]. 材料导报, 2021, 35(10): 10096–10102. doi: 10.11896/cldb.20060201

    WANG Y, ZHANG C M, ZHANG Y. Study on static and dynamic mechanical properties of aviation Al7050 alloy and construction of JC constitutive model [J]. Materials Reports, 2021, 35(10): 10096–10102. doi: 10.11896/cldb.20060201
    [9] ZHANG D, ZHANG X M, NIE G C, et al. Characterization of material strain and thermal softening effects in the cutting process [J]. International Journal of Machine Tools and Manufacture, 2021, 160: 103672. doi: 10.1016/j.ijmachtools.2020.103672
    [10] SKUDNOV V A, SOROKINA S A. Relation between the maximum specific deformation energy, hardness, and endurance limit of deformable aluminum alloys [J]. Metal Science and Heat Treatment, 1996, 38(8): 353–356. doi: 10.1007/BF01395324
    [11] ZONG Z, ZHAO Y J, XU F, et al. Dynamic responses of a full-scale aluminum ship subjected to underwater shock [J]. Journal of Ship Mechanics, 2013, 17(6): 656–671.
    [12] 缪素菲, 刘敬喜, 赵耀, 等. 船用铝合金板架结构典型节点的疲劳试验研究 [J]. 船舶力学, 2020, 24(7): 934–941. doi: 10.3969/j.issn.1007-7294.2020.07.011

    MIAO S F, LIU J X, ZHAO Y, et al. Experimental study of fatigue properties of aluminium alloy plate [J]. Journal of Ship Mechanics, 2020, 24(7): 934–941. doi: 10.3969/j.issn.1007-7294.2020.07.011
    [13] 严平, 赵垭丽, 李昕, 等. 基于耗能模型的超空泡射弹水下侵彻鱼雷等效关系研究 [J]. 爆炸与冲击, 2021, 49(9): 60–74.

    YAN P, ZHAO Y L, LI X, et al. Research on the equivalent relationship of torpedo penetrated by underwater supercavitation projectile based on energy consumption model [J]. Explosion and Shock Waves, 2021, 49(9): 60–74.
    [14] ALYANAK E, GRANDHI R, PENMETSA R. Optimum design of a supercavitating torpedo considering overall size, shape, and structural configuration [J]. International Journal of Solids and Structures, 2006, 43(3/4): 642–657.
    [15] WAN B B, CHEN W P, LIU L S, et al. Effect of trace yttrium addition on the microstructure and tensile properties of recycled Al-7Si-0.3Mg-1.0Fe casting alloys [J]. Materials Science and Engineering: A, 2016, 666: 165–175. doi: 10.1016/j.msea.2016.04.036
    [16] LI W, CHEN H T, LIANG Z, et al. Effects of SiC orientations and particle sizes on the low cycle fatigue properties of SiCp/A356 composite [J]. International Journal of Fatigue, 2021, 152: 106420. doi: 10.1016/j.ijfatigue.2021.106420
    [17] STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. doi: 10.1063/1.327799
    [18] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Engineering Fracture Mechanics, 1983, 21: 541–548.
    [19] BUZYURKIN A E, GLADKY I L, KRAUS E I. Determination and verification of Johnson-Cook model parameters at high-speed deformation of titanium alloys [J]. Aerospace Science and Technology, 2015, 45: 121–127. doi: 10.1016/j.ast.2015.05.001
    [20] HUANG Z P, GAO L H, WANG Y W, et al. Determination of the Johnson-Cook constitutive model parameters of materials by cluster global optimization algorithm [J]. Journal of Materials Engineering and Performance, 2016, 25(9): 4099–4107. doi: 10.1007/s11665-016-2178-1
    [21] SHOKRY A. On the constitutive modeling of a powder metallurgy nanoquasicrystalline Al93Fe3Cr2Ti2 alloy at elevated temperatures [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(3): 118. doi: 10.1007/s40430-019-1617-y
    [22] SHOKRY A, GOWID S, KHARMANDA G, et al. Constitutive models for the prediction of the hot deformation behavior of the 10% Cr steel alloy [J]. Materials, 2019, 12(18): 2873. doi: 10.3390/ma12182873
    [23] ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987, 61(5): 1816–1825. doi: 10.1063/1.338024
    [24] GOLDTHORPE B D. Constitutive equations for annealed and explosively shocked iron for application to high strain rates and large strains [J]. Journal de Physique Ⅳ, 1991, 1(C3): 829–835.
    [25] 张宏建, 温卫东, 崔海涛, 等. 不同温度下IC10合金的本构关系 [J]. 航空学报, 2008, 29(2): 499–504. doi: 10.3321/j.issn:1000-6893.2008.02.039

    ZHANG H J, WEN W D, CUI H T, et al. Constitutive analysis of alloy IC10 at different temperatures [J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2): 499–504. doi: 10.3321/j.issn:1000-6893.2008.02.039
    [26] PEREIRA J M, LERCH B A. Effects of heat treatment on the ballistic impact properties of Inconel 718 for jet engine fan containment applications [J]. International Journal of Impact Engineering, 2001, 25(8): 715–733. doi: 10.1016/S0734-743X(01)00018-5
    [27] 张志强, 李佳浩, 黄镇, 等. Mg-10Gd-3Y-0.6Zr-1Ag镁合金热压缩变形行为研究 [J]. 材料科学与工艺, 2014, 22(6): 1–5. doi: 10.11951/j.issn.1005-0299.20140601

    ZHANG Z Q, LI J H, HUANG Z, et al. Hot compression deformation behavior of the Mg-10Gd-3Y-0.6Zr-1Ag magnesium alloy [J]. Materials Science and Technology, 2014, 22(6): 1–5. doi: 10.11951/j.issn.1005-0299.20140601
    [28] 历长云, 胡玉昆, 郑喜军, 等. 热压烧结SiCp/ZL101A复合材料显微组织研究 [J]. 稀有金属材料与工程, 2012, 41(Suppl 2): 413–416.

    LI C Y, HU Y K, ZHENG X J, et al. Study of microstructure of SiCp/ZL101A composites by vacuum hot-pressing sintering processing [J]. Rare Metal Materials and Engineering, 2012, 41(Suppl 2): 413–416.
    [29] CHEN X M, LIN Y C, HU H W, et al. An enhanced Johnson-Cook model for hot compressed A356 aluminum alloy [J]. Advanced Engineering Materials, 2021, 23(1): 2000704. doi: 10.1002/adem.202000704
    [30] 罗中华, 张质良, 杨红亮. A356合金半固态流动特性的研究 [J]. 热加工工艺, 2008, 37(17): 1–4,98. doi: 10.3969/j.issn.1001-3814.2008.17.001

    LUO Z H, ZHANG Z L, YANG H L. Investigation of flow behavior of A356 semi-solid alloy [J]. Hot Working Technology, 2008, 37(17): 1–4,98. doi: 10.3969/j.issn.1001-3814.2008.17.001
    [31] 周国才, 胡时胜, 付峥. 用于测量材料高温动态力学性能的SHPB技术 [J]. 实验力学, 2010, 25(1): 9–15.

    ZHOU G C, HU S S, FU Z. SHPB technique used for measuring dynamic properties of material in high temperature [J]. Journal of Experimental Mechanics, 2010, 25(1): 9–15.
    [32] CHIDDISTER J L, MALVERN L E. Compression-impact testing of aluminum at elevated temperatures [J]. Experimental Mechanics, 1963, 3(4): 81–90. doi: 10.1007/BF02325890
    [33] 李建光, 施琪, 曹结东. Johnson-Cook本构方程的参数标定 [J]. 兰州理工大学学报, 2012, 38(2): 164–167. doi: 10.3969/j.issn.1673-5196.2012.02.038

    LI J G, SHI Q, CAO J D. Parameters calibration for Johnson-Cook constitutive equation [J]. Journal of Lanzhou University of Technology, 2012, 38(2): 164–167. doi: 10.3969/j.issn.1673-5196.2012.02.038
    [34] 郭学锋. 细晶镁合金制备方法及组织与性能 [M]. 北京: 冶金工业出版社, 2010: 168−170.

    GUO X F. Refined Mg alloys and their microstructures and properties [M]. Beijing: Metallurgical Industry Press, 2010: 168−170.
    [35] 杨胜利, 沈健, 陈利阳, 等. Al-Cu-Li合金热变形过程中微观组织的动态演变规律 [J]. 中国有色金属学报, 2019, 29(4): 674–683.

    YANG S L, SHEN J, CHEN L Y, et al. Dynamic evolution of microstructure of Al-Cu-Li alloy during hot deformation [J]. The Chinese Journal of Nonferrous Metals, 2019, 29(4): 674–683.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1226
  • HTML全文浏览量:  446
  • PDF下载量:  38
出版历程
  • 收稿日期:  2021-12-29
  • 修回日期:  2022-02-27
  • 录用日期:  2022-02-27
  • 刊出日期:  2022-05-30

目录

    /

    返回文章
    返回