Crack Propagation Regularity of Hydraulic Blasting in Deep Coal Seam
-
摘要: 深部煤层的地应力高、瓦斯含量高、渗透系数低,严重威胁煤炭的高效安全生产,必须进行强化增透以提高瓦斯的抽采率。水压爆破具有传能效率高、安全性好的特点,可应用于深部煤层增透。为研究深部煤层水压爆破裂纹扩展规律,基于LS-DYNA数值模拟,分析了不同的地应力、不耦合系数、耦合介质等条件下煤层的致裂效果。结果表明:地应力对水压爆破产生的冲击荷载有削减作用,地应力增大致使煤层裂纹长度变短,裂隙区范围减小,地应力在1~20 MPa范围内时,随着地应力的增大,爆破应力波的衰减逐渐减弱;不耦合系数处于1.0~3.0区间时,随着不耦合系数的增大,破碎区范围减小,裂隙区范围先增大后减小,煤层水压爆破裂纹扩展范围先增大后减小,不耦合系数为2.0时,爆破致裂效果最佳;采用不同的耦合介质爆破时,水介质耦合下爆破煤层裂隙区范围大于空气介质,水介质条件下爆破产生的有效应力最大值是空气介质下的1.35倍,水介质更有利于煤层裂纹的扩展发育。研究成果对于深部煤层水压爆破致裂增透工程实践具有一定的指导作用。Abstract: Deep coal seam has high geostress, high gas content and low permeability coefficient, which seriously threaten the safety and efficiency of coal production, so it is necessary to strengthen the permeability enhancement and improve the gas extraction rate. Hydraulic blasting has the characteristics of high energy transfer efficiency and good safety, and can be better applied to the permeability enhancement of deep coal seam. In order to study the crack propagation regularity of hydraulic blasting in deep coal seam, LS-DYNA numerical method was used to analyze the effect of fracture of coal seam under different geostresses, uncoupling coefficient and coupling medium. The results show that the geostress can reduce the impact load caused by hydraulic blasting. With the increase of geostress, the crack length of coal seam becomes shorter and the range of crack zone decreases. When the geostress is within the range of 1−20 MPa, the attenuation trend of blasting stress wave weakens gradually with the increase of geostress. With the increase of the uncoupling coefficient, the range of crushing zone decreases, the range of fracture zone increases at first and then decreases. When the uncoupling coefficient is in the range of 1.0−3.0 and the uncoupling coefficient is 2.0, the blasting cracking effect is the best. When blasting in different coupling media, and the range of blasting fracture zone in water is larger than that in air. The maximum effective stress produced by blasting in water is 1.35 times higher than that in air, the water is more beneficial to the propagation and development of coal seam cracks. This research results have a certain guiding role for the engineering practice of crack propagation and permeability enhancement caused by hydraulic blasting in deep coal seam.
-
表 1 煤层的主要力学参数
Table 1. Main mechanical parameters of coal seam
$\,\rho $/(g·cm−3) E/GPa c $\nu $ 2.6 68.69 2.63 0.25 表 2 炸药及其状态方程的主要参数
Table 2. Main parameters of explosive and equation of state
$\rho $/(g·cm−3) D/(m·s−1) pCJ/GPa A/GPa B/GPa R1 R2 E0/GPa $\omega $ 1.15 4300 3.43 214.4 0.182 4.5 0.9 3.5 0.15 表 3 空气及其状态方程的主要参数
Table 3. Main parameters of air and equation of state
$\,\rho$/(kg·m−3) C0 C1 C2 C3 C4 C5 C6 e0/(J·m−3) 1.29 0 0 0 0 0.4 0.4 0 2.5×105 表 4 水及其状态方程的主要参数
Table 4. Main parameters of water and equation of state
${\,\rho }$0/(g·cm−3) C/(km·s−1) S1 S2 S3 1.0 1.480 2.560 −1.986 0.227 -
[1] 袁亮, 薛俊华, 张农, 等. 煤层气抽采和煤与瓦斯共采关键技术现状与展望 [J]. 煤炭科学技术, 2013, 41(9): 6–11, 17. doi: 10.13199/j.cnki.cst.2013.09.006YUAN L, XUE J H, ZHANG N, et al. Development orientation and status of key technology for mine underground coal bed methane drainage as well as coal and gas simultaneous mining [J]. Coal Science and Technology, 2013, 41(9): 6–11, 17. doi: 10.13199/j.cnki.cst.2013.09.006 [2] 周世宁, 林柏泉. 煤矿瓦斯动力灾害防治理论及控制技术 [M]. 北京: 科学出版社, 2007.ZHOU S N, LIN B Q. Theory and control technology of coal mine gas dynamic disaster prevention [M]. Beijing: Science Press, 2007. [3] 程远平, 付建华, 俞启香. 中国煤矿瓦斯抽采技术的发展 [J]. 采矿与安全工程学报, 2009, 26(2): 127–139. doi: 10.3969/j.issn.1673-3363.2009.02.001CHENG Y P, FU J H, YU Q X. Development of gas extraction technology in coal mines of China [J]. Journal of Mining & Safety Engineering, 2009, 26(2): 127–139. doi: 10.3969/j.issn.1673-3363.2009.02.001 [4] 康红普. 煤岩体地质力学原位测试及在围岩控制中的应用 [M]. 北京: 科学出版社, 2013.KANG H P. In-situ geomechanics measurements for coal and rock masses and their application on strata control [M]. Beijing: Science Press, 2013. [5] 汪旭光. 爆破手册 [M]. 北京: 冶金工业出版社, 2010.WANG X G. Blasting manual [M]. Beijing: Metallurgical Industry Press, 2010. [6] 张英华, 倪文, 尹根成, 等. 穿层孔水压爆破法提高煤层透气性的研究 [J]. 煤炭学报, 2004, 29(3): 298–302. doi: 10.3321/j.issn:0253-9993.2004.03.010ZHANG Y H, NI W, YIN G C, et al. Study on improving the penetrability of coal seam with the water pressure blasting in the through beds hole [J]. Journal of China Coal Society, 2004, 29(3): 298–302. doi: 10.3321/j.issn:0253-9993.2004.03.010 [7] 孙鑫, 林柏泉, 董涛, 等. 穿层深孔水压控制爆破及其在防突工程中的应用 [J]. 采矿与安全工程学报, 2010, 27(1): 82–86. doi: 10.3969/j.issn.1673-3363.2010.01.016SUN X, LIN B Q, DONG T, et al. Deep crossing-hole controlled hydraulic blasting and its application in outburst prevention [J]. Journal of Mining & Safety Engineering, 2010, 27(1): 82–86. doi: 10.3969/j.issn.1673-3363.2010.01.016 [8] 蒲文龙, 毕业武. 低透气性煤层深孔聚能水压爆破增透瓦斯抽采技术 [J]. 煤炭科学技术, 2014, 42(5): 37–40. doi: 10.13199/j.cnki.cst.2014.05.010PU W L, BI Y W. Permeability improvement gas drainage technology with deep borehole accumulated energy hydraulic blasting of low permeability seam [J]. Coal Science and Technology, 2014, 42(5): 37–40. doi: 10.13199/j.cnki.cst.2014.05.010 [9] 陈士海, 林从谋. 水压爆破岩石的破坏特征 [J]. 煤炭学报, 1996, 21(1): 24–29. doi: 10.3321/j.issn:0253-9993.1996.01.005CHEN S H, LIN C M. Features of rock fragmented by water blasting [J]. Journal of China Coal Society, 1996, 21(1): 24–29. doi: 10.3321/j.issn:0253-9993.1996.01.005 [10] 邵珠山, 杨跃宗, 米俊峰, 等. 水压爆破中波衰减规律及致裂机理的理论研究 [J]. 西安建筑科技大学学报(自然科学版), 2017, 49(6): 820–826. doi: 10.15986/j.1006-7930.2017.06.008SHAO Z S, YANG Y Z, MI J F, et al. Theoretical study on the wave attenuation law about water pressure blasting [J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2017, 49(6): 820–826. doi: 10.15986/j.1006-7930.2017.06.008 [11] 徐向宇, 姚邦华, 魏建平, 等. 煤层预裂爆破应力波传播规律及增透机理模拟研究 [J]. 爆破, 2016, 33(2): 32–38. doi: 10.3963/j.issn.1001-487X.2016.02.007XU X Y, YAO B H, WEI J P, et al. Numerical study of stress wave propagation behavior and permability-increasing mechanism of pre-splitting blasting in coal seam [J]. Blasting, 2016, 33(2): 32–38. doi: 10.3963/j.issn.1001-487X.2016.02.007 [12] HUANG B X, LI P F, MA J, et al. Experimental investigation on the basic law of hydraulic fracturing after water pressure control blasting [J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1321–1334. doi: 10.1007/s00603-013-0470-z [13] HUANG B X, LI P F. Experimental investigation on the basic law of the fracture spatial morphology for water pressure blasting in a drillhole under true triaxial stress [J]. Rock Mechanics and Rock Engineering, 2015, 48(4): 1699–1709. doi: 10.1007/s00603-014-0649-y [14] ZHU Z M, MOHANTY B, XIE H P. Numerical investigation of blasting-induced crack initiation and propagation in rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(3): 412–424. doi: 10.1016/j.ijrmms.2006.09.002 [15] ZHU Z M, XIE H P, MOHANTY B. Numerical investigation of blasting-induced damage in cylindrical rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(2): 111–121. doi: 10.1016/j.ijrmms.2007.04.012 [16] 朱飞昊, 刘泽功, 刘健, 等. 松软煤层水不耦合装药预裂爆破的力学特性数值分析 [J]. 中国安全生产科学技术, 2018, 14(5): 124–129. doi: 10.11731/j.issn.1673-193x.2018.05.018ZHU F H, LIU Z G, LIU J, et al. Numerical analysis on mechanical properties of presplitting blasting with water uncoupled charge in soft coal seam [J]. Journal of Safety Science and Technology, 2018, 14(5): 124–129. doi: 10.11731/j.issn.1673-193x.2018.05.018