深部煤层水压爆破裂纹扩展规律

李真珍 于建新 杨小林 褚怀保 王金星 刘焕春

李真珍, 于建新, 杨小林, 褚怀保, 王金星, 刘焕春. 深部煤层水压爆破裂纹扩展规律[J]. 高压物理学报, 2022, 36(3): 035301. doi: 10.11858/gywlxb.20210912
引用本文: 李真珍, 于建新, 杨小林, 褚怀保, 王金星, 刘焕春. 深部煤层水压爆破裂纹扩展规律[J]. 高压物理学报, 2022, 36(3): 035301. doi: 10.11858/gywlxb.20210912
LI Zhenzhen, YU Jianxin, YANG Xiaolin, CHU Huaibao, WANG Jinxing, LIU Huanchun. Crack Propagation Regularity of Hydraulic Blasting in Deep Coal Seam[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 035301. doi: 10.11858/gywlxb.20210912
Citation: LI Zhenzhen, YU Jianxin, YANG Xiaolin, CHU Huaibao, WANG Jinxing, LIU Huanchun. Crack Propagation Regularity of Hydraulic Blasting in Deep Coal Seam[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 035301. doi: 10.11858/gywlxb.20210912

深部煤层水压爆破裂纹扩展规律

doi: 10.11858/gywlxb.20210912
基金项目: 国家自然科学基金(42107200);河南省科技攻关计划(212102310598);中国职业安全健康协会创新创业项目(CXCY-2021-23)
详细信息
    作者简介:

    李真珍(1996-),女,硕士,主要从事地下工程爆破及防灾减灾研究. E-mail:578425526@qq.com

    通讯作者:

    于建新(1986-),男,博士,副教授,主要从事地下工程爆破及防灾减灾研究.E-mail:jianxinyu@hpu.edu.cn

  • 中图分类号: O347; TU43

Crack Propagation Regularity of Hydraulic Blasting in Deep Coal Seam

  • 摘要: 深部煤层的地应力高、瓦斯含量高、渗透系数低,严重威胁煤炭的高效安全生产,必须进行强化增透以提高瓦斯的抽采率。水压爆破具有传能效率高、安全性好的特点,可应用于深部煤层增透。为研究深部煤层水压爆破裂纹扩展规律,基于LS-DYNA数值模拟,分析了不同的地应力、不耦合系数、耦合介质等条件下煤层的致裂效果。结果表明:地应力对水压爆破产生的冲击荷载有削减作用,地应力增大致使煤层裂纹长度变短,裂隙区范围减小,地应力在1~20 MPa范围内时,随着地应力的增大,爆破应力波的衰减逐渐减弱;不耦合系数处于1.0~3.0区间时,随着不耦合系数的增大,破碎区范围减小,裂隙区范围先增大后减小,煤层水压爆破裂纹扩展范围先增大后减小,不耦合系数为2.0时,爆破致裂效果最佳;采用不同的耦合介质爆破时,水介质耦合下爆破煤层裂隙区范围大于空气介质,水介质条件下爆破产生的有效应力最大值是空气介质下的1.35倍,水介质更有利于煤层裂纹的扩展发育。研究成果对于深部煤层水压爆破致裂增透工程实践具有一定的指导作用。

     

  • 图  数值计算模型

    Figure  1.  Model of numerical calculation

    图  不同地应力条件下不同时刻应力波的传播及裂纹扩展

    Figure  2.  Propagation of stress wave and cracks at different time under different geostresses

    图  不同地应力条件下的动能-时间曲线

    Figure  3.  Kinetic energy-time curves under different geostress conditions

    图 A的最大有效应力

    Figure  4.  Maximum effective stress at point A

    图  不同时刻不同不耦合系数条件下的应力波传播及裂纹扩展

    Figure  5.  Propagation of stress wave and cracks at different time under different uncoupling coefficients

    图  目标点B的选取

    Figure  6.  Selection of target point B

    图  目标点B的有效应力随时间变化曲线

    Figure  7.  Relationship between effective stress and time at point B

    图  水耦合条件下应力波传播及裂纹扩展

    Figure  8.  Propagation of stress wave and cracks under the condition of water coupling

    图  空气耦合条件下应力波传播及裂纹扩展

    Figure  9.  Propagation of stress wave and cracks under the condition of air coupling

    图  10  目标点CDE的选择

    Figure  10.  Selection of target points C, D and E

    图  11  目标点C的有效应力时程曲线

    Figure  11.  Effective stress-time curves at point C

    图  12  目标点D的有效应力时程曲线

    Figure  12.  Effective stress-time curves at point D

    图  13  目标点E的有效应力时程曲线

    Figure  13.  Effective stress-time curves at point E

    表  1  煤层的主要力学参数

    Table  1.   Main mechanical parameters of coal seam

    $\,\rho $/(g·cm−3)E/GPac$\nu $
    2.668.692.630.25
    下载: 导出CSV

    表  2  炸药及其状态方程的主要参数

    Table  2.   Main parameters of explosive and equation of state

    $\rho $/(g·cm−3)D/(m·s−1)pCJ/GPaA/GPaB/GPaR1R2E0/GPa$\omega $
    1.1543003.43214.40.1824.50.93.50.15
    下载: 导出CSV

    表  3  空气及其状态方程的主要参数

    Table  3.   Main parameters of air and equation of state

    $\,\rho$/(kg·m−3)C0C1C2C3C4C5C6e0/(J·m−3)
    1.290 0000.40.402.5×105
    下载: 导出CSV

    表  4  水及其状态方程的主要参数

    Table  4.   Main parameters of water and equation of state

    ${\,\rho }$0/(g·cm−3)C/(km·s−1)S1S2S3
    1.01.4802.560−1.9860.227
    下载: 导出CSV
  • [1] 袁亮, 薛俊华, 张农, 等. 煤层气抽采和煤与瓦斯共采关键技术现状与展望 [J]. 煤炭科学技术, 2013, 41(9): 6–11, 17. doi: 10.13199/j.cnki.cst.2013.09.006

    YUAN L, XUE J H, ZHANG N, et al. Development orientation and status of key technology for mine underground coal bed methane drainage as well as coal and gas simultaneous mining [J]. Coal Science and Technology, 2013, 41(9): 6–11, 17. doi: 10.13199/j.cnki.cst.2013.09.006
    [2] 周世宁, 林柏泉. 煤矿瓦斯动力灾害防治理论及控制技术 [M]. 北京: 科学出版社, 2007.

    ZHOU S N, LIN B Q. Theory and control technology of coal mine gas dynamic disaster prevention [M]. Beijing: Science Press, 2007.
    [3] 程远平, 付建华, 俞启香. 中国煤矿瓦斯抽采技术的发展 [J]. 采矿与安全工程学报, 2009, 26(2): 127–139. doi: 10.3969/j.issn.1673-3363.2009.02.001

    CHENG Y P, FU J H, YU Q X. Development of gas extraction technology in coal mines of China [J]. Journal of Mining & Safety Engineering, 2009, 26(2): 127–139. doi: 10.3969/j.issn.1673-3363.2009.02.001
    [4] 康红普. 煤岩体地质力学原位测试及在围岩控制中的应用 [M]. 北京: 科学出版社, 2013.

    KANG H P. In-situ geomechanics measurements for coal and rock masses and their application on strata control [M]. Beijing: Science Press, 2013.
    [5] 汪旭光. 爆破手册 [M]. 北京: 冶金工业出版社, 2010.

    WANG X G. Blasting manual [M]. Beijing: Metallurgical Industry Press, 2010.
    [6] 张英华, 倪文, 尹根成, 等. 穿层孔水压爆破法提高煤层透气性的研究 [J]. 煤炭学报, 2004, 29(3): 298–302. doi: 10.3321/j.issn:0253-9993.2004.03.010

    ZHANG Y H, NI W, YIN G C, et al. Study on improving the penetrability of coal seam with the water pressure blasting in the through beds hole [J]. Journal of China Coal Society, 2004, 29(3): 298–302. doi: 10.3321/j.issn:0253-9993.2004.03.010
    [7] 孙鑫, 林柏泉, 董涛, 等. 穿层深孔水压控制爆破及其在防突工程中的应用 [J]. 采矿与安全工程学报, 2010, 27(1): 82–86. doi: 10.3969/j.issn.1673-3363.2010.01.016

    SUN X, LIN B Q, DONG T, et al. Deep crossing-hole controlled hydraulic blasting and its application in outburst prevention [J]. Journal of Mining & Safety Engineering, 2010, 27(1): 82–86. doi: 10.3969/j.issn.1673-3363.2010.01.016
    [8] 蒲文龙, 毕业武. 低透气性煤层深孔聚能水压爆破增透瓦斯抽采技术 [J]. 煤炭科学技术, 2014, 42(5): 37–40. doi: 10.13199/j.cnki.cst.2014.05.010

    PU W L, BI Y W. Permeability improvement gas drainage technology with deep borehole accumulated energy hydraulic blasting of low permeability seam [J]. Coal Science and Technology, 2014, 42(5): 37–40. doi: 10.13199/j.cnki.cst.2014.05.010
    [9] 陈士海, 林从谋. 水压爆破岩石的破坏特征 [J]. 煤炭学报, 1996, 21(1): 24–29. doi: 10.3321/j.issn:0253-9993.1996.01.005

    CHEN S H, LIN C M. Features of rock fragmented by water blasting [J]. Journal of China Coal Society, 1996, 21(1): 24–29. doi: 10.3321/j.issn:0253-9993.1996.01.005
    [10] 邵珠山, 杨跃宗, 米俊峰, 等. 水压爆破中波衰减规律及致裂机理的理论研究 [J]. 西安建筑科技大学学报(自然科学版), 2017, 49(6): 820–826. doi: 10.15986/j.1006-7930.2017.06.008

    SHAO Z S, YANG Y Z, MI J F, et al. Theoretical study on the wave attenuation law about water pressure blasting [J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2017, 49(6): 820–826. doi: 10.15986/j.1006-7930.2017.06.008
    [11] 徐向宇, 姚邦华, 魏建平, 等. 煤层预裂爆破应力波传播规律及增透机理模拟研究 [J]. 爆破, 2016, 33(2): 32–38. doi: 10.3963/j.issn.1001-487X.2016.02.007

    XU X Y, YAO B H, WEI J P, et al. Numerical study of stress wave propagation behavior and permability-increasing mechanism of pre-splitting blasting in coal seam [J]. Blasting, 2016, 33(2): 32–38. doi: 10.3963/j.issn.1001-487X.2016.02.007
    [12] HUANG B X, LI P F, MA J, et al. Experimental investigation on the basic law of hydraulic fracturing after water pressure control blasting [J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1321–1334. doi: 10.1007/s00603-013-0470-z
    [13] HUANG B X, LI P F. Experimental investigation on the basic law of the fracture spatial morphology for water pressure blasting in a drillhole under true triaxial stress [J]. Rock Mechanics and Rock Engineering, 2015, 48(4): 1699–1709. doi: 10.1007/s00603-014-0649-y
    [14] ZHU Z M, MOHANTY B, XIE H P. Numerical investigation of blasting-induced crack initiation and propagation in rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(3): 412–424. doi: 10.1016/j.ijrmms.2006.09.002
    [15] ZHU Z M, XIE H P, MOHANTY B. Numerical investigation of blasting-induced damage in cylindrical rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(2): 111–121. doi: 10.1016/j.ijrmms.2007.04.012
    [16] 朱飞昊, 刘泽功, 刘健, 等. 松软煤层水不耦合装药预裂爆破的力学特性数值分析 [J]. 中国安全生产科学技术, 2018, 14(5): 124–129. doi: 10.11731/j.issn.1673-193x.2018.05.018

    ZHU F H, LIU Z G, LIU J, et al. Numerical analysis on mechanical properties of presplitting blasting with water uncoupled charge in soft coal seam [J]. Journal of Safety Science and Technology, 2018, 14(5): 124–129. doi: 10.11731/j.issn.1673-193x.2018.05.018
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  1034
  • HTML全文浏览量:  299
  • PDF下载量:  39
出版历程
  • 收稿日期:  2021-12-01
  • 修回日期:  2021-12-21
  • 刊出日期:  2022-05-30

目录

    /

    返回文章
    返回