高压下岩浆凝固对岩石圈力学状态的影响

李欣 贺端威

李欣, 贺端威. 高压下岩浆凝固对岩石圈力学状态的影响[J]. 高压物理学报, 2022, 36(1): 011203. doi: 10.11858/gywlxb.20210905
引用本文: 李欣, 贺端威. 高压下岩浆凝固对岩石圈力学状态的影响[J]. 高压物理学报, 2022, 36(1): 011203. doi: 10.11858/gywlxb.20210905
LI Xin, HE Duanwei. Effect of Magma Solidification under High Pressure on Mechanical State of Lithosphere[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 011203. doi: 10.11858/gywlxb.20210905
Citation: LI Xin, HE Duanwei. Effect of Magma Solidification under High Pressure on Mechanical State of Lithosphere[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 011203. doi: 10.11858/gywlxb.20210905

高压下岩浆凝固对岩石圈力学状态的影响

doi: 10.11858/gywlxb.20210905
详细信息
    作者简介:

    李 欣(1996-),女,硕士研究生,主要从事地壳动力学研究. E-mail:1909016563@qq.com

    通讯作者:

    贺端威(1969-),男,博士,教授,主要从事高压物理、大腔体静高压技术、超硬材料研究.E-mail:duanweihe@scu.edu.cn

  • 中图分类号: P31; P553

Effect of Magma Solidification under High Pressure on Mechanical State of Lithosphere

  • 摘要: 板块构造活动与岩石圈密切相关,是地震等重大地质活动的物理源,但其动力机制尚不清楚。为此,通过分析地球内部处于高压环境的岩浆凝固对岩石圈力学状态的影响,探究板块运动的力源机制。地球作为一个整体不断向外太空散发热量,内部是处于高压高温下的液-固共存状态。自地球形成以来,熔融岩浆的凝固过程持续至今,液-固转变将导致地球内部的密度变化和潜热释放,从而降低刚性岩石圈底部的压力及其支撑力。研究发现,岩石圈的强度不足以支撑其自重,底部的压力(强)波动会使其力学结构失稳。受刚性、脆性岩石圈的约束,地球内部处于高压环境的岩浆凝固必然导致岩石圈力学状态发生变化,在重力作用下,板块之间的相互作用加剧,局部应力积累会超过岩石的强度极限,导致岩石圈内部发生破裂,所积累的应力通过地震等地质活动形式在岩石圈薄弱地带释放,并自我调整以达到新的力学平衡,而板块边界就是岩石圈的最薄弱区域,所以该区域的地震活动频繁发生。上述过程是不断重复的,这就是板块运动驱动力的来源。

     

  • 图  全球热量平衡(改自文献[17])

    Figure  1.  Global heat-flow balance (modified from Ref.[17])

    图  地球岩石圈的球壳简化模型

    Figure  2.  A simplified spherical shell model of the Earth’s lithosphere

    图  岩石圈受力分析

    Figure  3.  Stress analysis of lithosphere

    图  地震板块

    Figure  4.  Plate seismogram

    图  板块边界等效受力分析

    Figure  5.  Equivalent mechanical analysis of plate boundary

    表  1  不同时期不同研究人员对地球内部年均热散失量的估算结果[17, 22-31]

    Table  1.   Estimates of annual heat loss from the Earth’s interior by different researchers at different times[17, 22-31]

    Total heat loss/TWRef. Total heat loss/TWRef.
    31.1Ref.[22] (1970) 44.2±1Ref.[28] (1993)
    42.5Ref.[23] (1974)46.0Ref.[29] (2007)
    30.1Ref.[24] (1975)46.0±3Ref.[17] (2008)
    39.2Ref.[25] (1979)47.0±2Ref.[30] (2010)
    41.0Ref.[26] (1980)44.0Ref.[31] (2013)
    42.0Ref.[27] (1980)
    下载: 导出CSV

    表  2  不同熔融岩浆和岩浆岩在高温高压下的密度[16, 39-42]

    Table  2.   Densities of different molten magma and magmatic rocks at high temperatures and pressures[16, 39-42]

    Molten magma Magmatic rock
    MagmaDensity/
    (g·cm−3)
    Ref.RockDensity/
    (g·cm−3)
    Ref.
    Hypothetical magma2.88Ref.[16] (2018) Hypothetical magmatic rock3.3 Ref.[16] (2018)
    Hydrous peridotite magma2.77/2.8/2.83Ref.[39] (2009)Average sediment3.16Ref.[42] (2007)
    PHN16112.87/2.94Ref.[40] (2003)Mid-ocean ridge basalt3.5 Ref.[42] (2007)
    Mid-ocean ridge basalt2.88Ref.[41] (2001)This study (average)3.32
    This study (average)2.85
    下载: 导出CSV

    表  3  不同岩石类型作为岩石圈主要成分时所承受的最大临界弹性屈曲载荷

    Table  3.   Maximum critical elastic buckling load of different rock types as major components of the lithosphere

    Rock typesE/GPaδ/kmR/kmpcr/MPa
    Gneiss 90100637118.6
    Gabbro123100637125.4
    Peridotite130100637127.0
    下载: 导出CSV
  • [1] AHRENS T J. The origin of the Earth [J]. Physics Today, 1994, 47(8): 38–45. doi: 10.1063/1.881436
    [2] MA X L, SUN X L, THOMAS C. Localized ultra-low velocity zones at the eastern boundary of Pacific LLSVP [J]. Earth and Planetary Science Letters, 2019, 507: 40–49. doi: 10.1016/j.jpgl.2018.11.037
    [3] ONO S. Experimental constraints on the temperature profile in the lower mantle [J]. Physics of the Earth and Planetary Interiors, 2008, 170(3/4): 267–273. doi: 10.1016/j.pepi.2008.06.033
    [4] LAY T, WILLIAMS Q, GARNERO E J. The core-mantle boundary layer and deep Earth dynamics [J]. Nature, 1998, 392(6675): 461–468. doi: 10.1038/33083
    [5] MONTAGNER J P. Earth’s structure, global [M]. Dordrecht: Springer Science & Business Media, 2011: 144–147.
    [6] FROST D J. The upper mantle and transition zone [J]. Elements, 2008, 4(3): 171–176. doi: 10.2113/GSELEMENTS.4.3.171
    [7] KARATO S I. On the origin of the asthenosphere [J]. Earth and Planetary Science Letters, 2012, 321/322: 95–103. doi: 10.1016/j.jpgl.2012.01.001
    [8] PHILPOTTS A R, AGUE J J. Principles of igneous and metamorphic petrology [M]. Cambridge, UK: Cambridge University Press, 2021.
    [9] WEGENER A. Die entstehung der kontinente [J]. Geologische Rundschau, 1912, 3(4): 276–292. doi: 10.1007/BF02202896
    [10] BACKUS G E. Magnetic anomalies over oceanic ridges [J]. Nature, 1964, 201(4919): 591–592. doi: 10.1038/201591a0
    [11] DIETZ R S. Continent and ocean basin evolution by spreading of the sea floor [J]. Nature, 1961, 190(4779): 854–857. doi: 10.1038/190854a0
    [12] MCKENZIE D P, PARKER R L. The North Pacific: an example of tectonics on a sphere [J]. Nature, 1967, 216(5122): 1276–1280. doi: 10.1038/2161276a0
    [13] MORGAN W J. Rises, trenches, great faults, and crustal blocks [J]. Journal of Geophysical Research: Planets, 1968, 73(6): 1959–1982. doi: 10.1029/JB073i006p01959
    [14] WILSON J T. A new class of faults and their bearing on continental drift [J]. Nature, 1965, 207(4995): 343–347. doi: 10.1038/207343a0
    [15] GUPTA H K. Encyclopedia of solid Earth geophysics [M]. Dordrecht: Springer, 2011.
    [16] 霍睿智, 贺端威. 基于岩浆凝固的地壳动力学研究 [J]. 高压物理学报, 2018, 32(5): 051201. doi: 10.11858/gywlxb.20180599

    HUO R Z, HE D W. Crustal dynamics based on magma solidification [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051201. doi: 10.11858/gywlxb.20180599
    [17] LAY T, HERNLUND J, BUFFETT B A. Core-mantle boundary heat flow [J]. Nature Geoscience, 2008, 1(1): 25–32. doi: 10.1038/ngeo.2007.44
    [18] PYLE D M. Mass and energy budgets of explosive volcanic eruptions [J]. Geophysical Research Letters, 1995, 22(5): 563–566. doi: 10.1029/95GL00052
    [19] NAKAMURA K. Preliminary estimate of global volcanic production rate [M]//COLP J L, FURUMOTO A S. Proceeding of A United States-Japan Cooperative Science Seminar of the Utilization of Volcanic Energy. Hawaii: University of Hawaii, 1974.
    [20] 李玉锁. 火山喷发机制与预报 [M]. 北京: 地震出版社, 1998: 15–21.

    LI Y S. Mechanism and prediction of volcanic eruption [M]. Beijing: Seismological Press, 1998: 15–21.
    [21] 王维勇. 地热基础理论研究 [M]. 北京: 地质出版社, 1982: 31–44.

    WANG W Y. Geothermal basic theory research [M]. Beijing: Geological Publishing House, 1982: 31–44.
    [22] LEE W H K. On the global variations of terrestrial heat-flow [J]. Physics of the Earth and Planetary Interiors, 1970, 2(5): 332–341. doi: 10.1016/0031-9201(69)90026-0
    [23] WILLIAMS D L, VON HERZEN R P. Heat loss from the Earth: new estimate [J]. Geology, 1974, 2(7): 327–328. doi: 10.1130/0091-7613(1974)2<327:HLFTEN>2.0.CO;2
    [24] CHAPMAN D S, POLLACK H N. Global heat flow: a new look [J]. Earth and Planetary Science Letters, 1975, 28(1): 23–32. doi: 10.1016/0012-821X(75)90069-2
    [25] LANGSETH M G, ANDERSON R N. Correction [to “The mechanisms of heat transfer through the floor of the Indian Ocean”] [J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B3): 1139–1140. doi: 10.1029/JB084iB03p01139
    [26] DAVIES G F. Review of oceanic and global heat flow estimates [J]. Reviews of Geophysics, 1980, 18(3): 718–722. doi: 10.1029/RG018i003p00718
    [27] SCLATER J G, JAUPART C, GALSON D. The heat flow through oceanic and continental crust and the heat loss of the Earth [J]. Reviews of Geophysics, 1980, 18(1): 269–311. doi: 10.1029/RG018i001p00269
    [28] POLLACK H N, HURTER S J, JOHNSON J R. Heat flow from the Earth’s interior: analysis of the global data set [J]. Reviews of Geophysics, 1993, 31(3): 267–280. doi: 10.1029/93RG01249
    [29] JAUPART C, LABROSSE S, MARECHAL J C. Temperatures, heat and energy in the mantle of the Earth [M]//SCHUBERT G. Treatise on Geophysics. Amsterdam: Elsevier, 2007: 264–276.
    [30] DAVIES J H, DAVIES D R. Earth’s surface heat flux [J]. Solid Earth, 2010, 1(1): 5–24. doi: 10.5194/se-1-5-2010
    [31] DAVIES J H. Global map of solid Earth surface heat flow [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(10): 4608–4622. doi: 10.1002/ggge.20271
    [32] MARESCHAL J C, JAUPART C, PHANEUF C, et al. Geoneutrinos and the energy budget of the Earth [J]. Journal of Geodynamics, 2012, 54: 43–54. doi: 10.1016/j.jog.2011.10.005
    [33] AREVALO R Jr, MCDONOUGH W F, LUONG M. The K/U ratio of the silicate Earth: insights into mantle composition, structure and thermal evolution [J]. Earth and Planetary Science Letters, 2009, 278(3/4): 361–369. doi: 10.1016/j.jpgl.2008.12.023
    [34] DRISCOLL P, BERCOVICI D. On the thermal and magnetic histories of Earth and Venus: influences of melting, radioactivity, and conductivity [J]. Physics of the Earth and Planetary Interiors, 2014, 236: 36–51. doi: 10.1016/j.pepi.2014.08.004
    [35] HU S, HE H C, JI J L, et al. A dry lunar mantle reservoir for young mare basalts of Chang’e-5 [J]. Nature, 2021, 600(7887): 49–53. doi: 10.1038/s41586-021-04107-9
    [36] LI Q L, ZHOU Q, LIU Y, et al. Two billion-year-old volcanism on the Moon from Chang’e-5 basalts [J]. Nature, 2021, 600(7887): 54–58. doi: 10.1038/s41586-021-04100-2
    [37] NAKAGAWA T, TACKLEY P J. Influence of magmatism on mantle cooling, surface heat flow and Urey ratio [J]. Earth and Planetary Science Letters, 2012, 329/330: 1–10. doi: 10.1016/j.jpgl.2012.02.011
    [38] VACQUIER V. A theory of the origin of the Earth’s internal heat [J]. Tectonophysics, 1998, 291(1): 1–7. doi: 10.1016/S0040-1951(98)00026-2
    [39] SAKAMAKI T, OHTANI E, URAKAWA S, et al. Measurement of hydrous peridotite magma density at high pressure using the X-ray absorption method [J]. Earth and Planetary Science Letters, 2009, 287(3/4): 293–297. doi: 10.1016/j.jpgl.2009.07.030
    [40] SUZUKI A, OHTANI E. Density of peridotite melts at high pressure [J]. Physics and Chemistry of Minerals, 2003, 30(8): 449–456. doi: 10.1007/s00269-003-0322-6
    [41] OHTANI E, MAEDA M. Density of basaltic melt at high pressure and stability of the melt at the base of the lower mantle [J]. Earth and Planetary Science Letters, 2001, 193(1/2): 69–75. doi: 10.1016/S0012-821X(01)00505-2
    [42] MASSONNE H J, WILLNER A P, GERYA T. Densities of metapelitic rocks at high to ultrahigh pressure conditions: what are the geodynamic consequences? [J]. Earth and Planetary Science Letters, 2007, 256(1/2): 12–27. doi: 10.1016/j.jpgl.2007.01.013
    [43] PAN B B, CUI W C. An overview of buckling and ultimate strength of spherical pressure hull under external pressure [J]. Marine Structures, 2010, 23(3): 227–240. doi: 10.1016/j.marstruc.2010.07.005
    [44] JI S C, WANG Q, SALISBURY M H. Composition and tectonic evolution of the Chinese continental crust constrained by Poisson’s ratio [J]. Tectonophysics, 2009, 463(1/2/3/4): 15–30. doi: 10.1016/j.tecto.2008.09.007
    [45] KLEIN C, CARMICHAEL R S. Rock. Encyclopedia Britannica [M/OL] (2021-05-07)[2021-11-01]. https://www.britannica.com/science/rock-geology.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  774
  • HTML全文浏览量:  379
  • PDF下载量:  47
出版历程
  • 收稿日期:  2021-11-17
  • 修回日期:  2021-12-31

目录

    /

    返回文章
    返回