Optical Response and Application of Mechanoluminescent Film of ZnS:Cu under Impact Pressure
-
摘要: 力致荧光材料因具有发光亮度强、力致响应灵敏度高、稳定性良好以及无需外加电压或紫外光照射激活等特性而被广泛应用于应力传感、应力记录等领域。然而,国内外对力致荧光材料的动态冲击特性鲜有研究。通过高温固相烧结法制备了ZnS:Cu粉末,并利用X射线衍射仪、拉曼光谱仪、扫描电子显微镜和X射线光电子能谱仪对其进行了表征。结果表明,ZnS:Cu粉末晶体具有纤锌矿结构,平均颗粒大小约为20 μm。然后,通过ZnS:Cu粉末与水玻璃的混合物在靶板上涂覆形成约50 μm的力致荧光薄膜。此外,通过轻气炮平板撞击实验,得到ZnS:Cu力致荧光薄膜的输出电压信号与冲击压力呈线性关系,与理论分析结果一致。最后,提出了两种基于力致荧光薄膜的测试方法:多点冲击压力测试方法和冲击波到达时间测试方法。其中,多点冲击压力测试方法可用于微小尺度以及大尺度炸药装药爆轰压力分布式测量,冲击波到达时间测试方法可用于冲击波速度和冲击波波阵面形状等参数的测量。Abstract: Mechanoluminescent materials are widely used in stress sensing, recording and other fields because of their strong luminescence brightness, high force sensitivity, good stability and no need for external bias or ultraviolet irradiation. However, little research has been conducted on dynamic impact response of mechanoluminescent materials. ZnS:Cu powder was prepared by high temperature solid state sintering, and characterized by X-ray diffractometer, Raman spectrometer, scanning electron microscope and X-ray photoelectron spectroscopy. The results show that ZnS:Cu powders have a wurtzite structure, and the average particle size is about 20 μm. The mechanoluminescent film of approximately 50 μm thickness was coated on the target plate by mixing ZnS:Cu powder and sodium silicate. In addition, the plane-plate impact experiments show that the output voltage signal induced by ZnS:Cu mechanoluminescent film has a linear relationship with the impact pressure, which is consistent with the theoretical analysis. Finally, two testing methods based on mechanoluminescent film are proposed. The multi-point impact pressure test method can be used for the distributed measurement of detonation pressure produced by small-scale and large-scale explosive charges, and the shock wave arrival time test method can be used for the measurement of shock wave velocity, shock wavefront shape and other parameters.
-
Key words:
- impact pressure /
- mechanoluminescence /
- ZnS:Cu film /
- shock wave velocity
-
表 1 飞片速度以及对应的冲击压力与信号电压
Table 1. Flyer velocity corresponding impact pressure and voltage of the signal
v/
(m·s−1)p/
GPaUmax/
V98.49 3.75 0.036 153.98 5.90 0.120 184.44 7.08 0.385 301.50 11.72 0.852 340.85 13.30 1.480 -
[1] 刘明丽, 吴琪, 史慧芳, 等. 有机/金属有机力致发光材料的研究进展 [J]. 化学学报, 2018, 76(4): 246–258. doi: 10.6023/A17110504LIU M L, WU Q, SHI H F, et al. Progress of research on organic/organometallic mechanoluminescent materials [J]. Acta Chimica Sinica, 2018, 76(4): 246–258. doi: 10.6023/A17110504 [2] ZHANG J, BAO L K, LOU H Q, et al. Flexible and stretchable mechanoluminescent fiber and fabric [J]. Journal of Materials Chemistry C, 2017, 32: 8027–8032. [3] WANG X D, QUE M L, CHEN M X, et al. Full dynamic-range pressure sensor matrix based on optical and electrical dual-mode sensing [J]. Advanced Materials, 2017, 29(15): 1605817. doi: 10.1002/adma.201605817 [4] KERSEMANS M, SMET P F, LAMMENS N, et al. Fast reconstruction of a bounded ultrasonic beam using acoustically induced piezo-luminescence [J]. Applied Physics Letters, 2015, 107: 234102. doi: 10.1063/1.4937354 [5] BERGERON N P, HOLLERMAN W A, GOEDEKE S M, et al. Experimental evidence of triboluminescence induced by hypervelocity impact [J]. International Journal of Impact Engineering, 2006, 33(1): 91–99. doi: 10.1016/j.ijimpeng.2006.09.079 [6] CHANDRA B P, CHANDRA V K, MAHOBIA S K, et al. Real-time mechanoluminescence sensing of the amplitude and duration of impact stress [J]. Sensors and Actuators A: Physical, 2012, 173(1): 9–16. doi: 10.1016/j.sna.2011.09.043 [7] 周文斌, 毛启楠, 陈志安, 等. 背景光辐照下SrAl2O4: (Eu2+, Dy3+)的力致发光性能的实验研究 [J]. 传感技术学报, 2017, 30(8): 1163–1166. doi: 10.3969/j.issn.1004-1699.2017.08.005ZHOU W B, MAO Q N, CHEN Z A, et al. Mechanoluminescence-property of SrAl2O4: (Eu2+, Dy3+) under background light irradiation [J]. Chinese Journal of Sensors and Actuators, 2017, 30(8): 1163–1166. doi: 10.3969/j.issn.1004-1699.2017.08.005 [8] RAVI S, BISENB D P, DHOBEL S J, et al. Mechanoluminescence and thermoluminescence of Mn doped ZnS nanocrystals [J]. Journal of Luminescence, 2011, 131(10): 2089–2092. doi: 10.1016/j.jlumin.2011.05.020 [9] SHARMA R, BISEN D P, CHANDRA B P, et al. Experimental and theoretical study of the mechanoluminescence of ZnS: Mn nanoparticles [J]. Journal of Electronic Materials, 2015, 44: 3312–3321. doi: 10.1007/s11664-015-3911-5 [10] 高长银. 压电效应新技术及应用 [M]. 北京: 电子工业出版社, 2012.GAO C Y. New technology and application of piezoelectric effect [M]. Beijing: Electronics Industry Press, 2012. [11] 经福谦. 实验物态方程导引 [M]. 2版. 北京: 科学出版社, 1999.JING F Q. Introduction to experimental equation of state [M]. 2nd ed. Beijing: Science Press, 1999. [12] 武鹏, 焦建设, 胡艳, 等. 光纤结构参数对亚毫米沟槽装药爆速测试的影响研究 [J]. 爆破器材, 2014, 43(4): 6–10. doi: 10.3969/j.issn.1001-8352.2014.04.002WU P, JIAO J S, HU Y, et al. Structure parameter dependence of detonation velocity of sub-millimeter groove charge on optical fiber [J]. Explosive Materials, 2014, 43(4): 6–10. doi: 10.3969/j.issn.1001-8352.2014.04.002 [13] 王长利, 李焰, 刘文祥, 等. 薄膜式锰铜压阻计的动态标定 [J]. 力学与实践, 2011, 33(5): 46–50.WANG C L, LI Y, LIU W X, et al. Dynamic calibration of thin-film manganin piezoresistance gauges [J]. Mechanics and Engineering, 2011, 33(5): 46–50. [14] 李春花, 叶玉堂, 吴云峰, 等. 光纤探针技术在冲击波参量测量中的应用 [J]. 激光与光电子学进展, 2007, 44(11): 36–40.LI C H, YE Y T, WU Y F, et al. Applications of optical fiber probe in shock-wave parameter testing [J]. Laser & Optoelectronics Progress, 2007, 44(11): 36–40. [15] 王荣波, 何莉华, 田建华, 等. 两种光纤探针在冲击波作用下的时间响应特性 [J]. 高压物理学报, 2005, 19(3): 284–288. doi: 10.3969/j.issn.1000-5773.2005.03.016WANG R B, HE L H, TIAN J H, et al. The time response character of two types of fiber-optic pin under shock wave loading [J]. Chinese Journal of High Pressure Physics, 2005, 19(3): 284–288. doi: 10.3969/j.issn.1000-5773.2005.03.016