基于代表性体积单元模型的矿石组分界面破碎特征

蔡改贫 郝书灏 余成 宣律伟

蔡改贫, 郝书灏, 余成, 宣律伟. 基于代表性体积单元模型的矿石组分界面破碎特征[J]. 高压物理学报, 2022, 36(3): 035302. doi: 10.11858/gywlxb.20210896
引用本文: 蔡改贫, 郝书灏, 余成, 宣律伟. 基于代表性体积单元模型的矿石组分界面破碎特征[J]. 高压物理学报, 2022, 36(3): 035302. doi: 10.11858/gywlxb.20210896
CAI Gaipin, HAO Shuhao, YU Cheng, XUAN Lyuwei. Fracture Characteristics of Ore Components Interface Based on Representative Volume Unit Model[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 035302. doi: 10.11858/gywlxb.20210896
Citation: CAI Gaipin, HAO Shuhao, YU Cheng, XUAN Lyuwei. Fracture Characteristics of Ore Components Interface Based on Representative Volume Unit Model[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 035302. doi: 10.11858/gywlxb.20210896

基于代表性体积单元模型的矿石组分界面破碎特征

doi: 10.11858/gywlxb.20210896
基金项目: 国家自然科学基金(51464017);江西省重点研发计划(20181ACE50034)
详细信息
    作者简介:

    蔡改贫(1964-),男,博士,教授,主要从事散体-矿冶智能装备、物料破碎动力学关键技术和装备开发等研究. E-mail:664431653@qq.com

  • 中图分类号: O347; TD912

Fracture Characteristics of Ore Components Interface Based on Representative Volume Unit Model

  • 摘要: 矿物组分的界面破碎特征一般指黏结界面在外部载荷作用下产生的应力、应变等,其对研究矿物组分解离、提高矿石破碎效率具有重要意义。针对矿石内部组分矿物聚集、有用矿物非均匀分布的特点,开展了岩石内部岩相分析实验和矿物界面原位加载实验,在此基础上,利用非线性、多尺度建模平台DIGIMAT构建符合组分矿物微观结构的代表性体积单元(RVE)模型,并通过DIGIMAT-ABAQUS耦合开展矿石RVE模型原位破碎模拟。结果表明:(1)黑钨矿石中有用矿物以颗粒状分布在矿石内部,主要分布在石英矿物内及其与硅质岩矿物黏结界面处;(2)不同组分黏结界面的力学性质存在差异,且与组成矿物的物理属性、形态特征等相关,石英-硅质岩界面的最小破碎应力(界面发生破坏时的应力)范围为1.1785~1.4826 GPa,石英-钨界面的最小破碎应力范围为1.3355~1.5420 GPa;(3)加载速率为0.010或0.005 kN/s时,矿石破碎峰值应力无明显变化,但其对矿石内部形变的影响较大,且加载速率为0.010 kN/s时,强化阶段应力易突然降低并不断波动;(4)原位载荷产生的破坏主要发生在载荷作用区域边界,且两组界面中石英矿物破碎力学性能参数大于钨矿物和硅质岩矿物,即界面组成矿物中石英矿物优先形成破坏。

     

  • 图  处理前黑钨矿石试样

    Figure  1.  Wolframite ore sample before treatment

    图  黑钨矿石内部钨颗粒岩相

    Figure  2.  Tungsten granular facies inside wolframite

    图  石英和硅质岩的断裂界面

    Figure  3.  Quartz and siliceous rock interface fracture map

    图  原位加载实验装置

    Figure  4.  In-situ loading experimental device

    图  自制原位加载压头示意图(单位:mm)

    Figure  5.  Sketch map of self-made in-situ loading indenter (Unit: mm)

    图  原位加载实验示意图

    Figure  6.  Schematic diagram of in-situ loading experiment

    图  不同加载速率下石英-硅质岩组分界面的应力-应变曲线

    Figure  7.  Stress-strain curves of quartz-siliceous rock component interface under different loading rates

    图  不同加载速率下石英-钨组分界面的应力-应变曲线

    Figure  8.  Stress-strain curves of quartz-tungsten component interface under different loading rates

    图  三维矿石RVE模型和网格模型

    Figure  9.  3D ore RVE model and mesh model

    图  10  石英-硅质岩界面原位加载模拟结点的应力、应变分布

    Figure  10.  Stress and strain distributions of in-situ loading simulation node of the quartz-siliceous rock interface

    图  11  石英-钨界面原位加载模拟结点的应力、应变分布

    Figure  11.  Stress and strain distributions of in-situ loading simulation node of the quartz-tungsten interface

    表  1  钨颗粒的特征尺寸

    Table  1.   Characteristic sizes of different tungsten particles

    W particle No.Length/mmWidth/mmPerimeter/mmArea/mm2
    11.6091.5096.9901.2295
    22.9662.14410.980 3.6125
    32.6452.23313.930 2.8330
    41.8491.1867.6342.3356
    50.9220.1372.2300.0703
    61.1980.7754.7200.4160
    71.0470.6223.4420.6056
    81.0400.6743.4360.6587
    下载: 导出CSV

    表  2  矿物界面的最小破碎应力

    Table  2.   Minimum fracture stress of component mineral interface

    Interface typesMinimum fracture stress/GPa
    12345678
    Quartz-siliceous rock interface1.40341.17851.33551.27321.28451.31711.47841.4826
    Quartz-tungsten interface1.54201.43731.44581.46711.36381.33551.43171.4571
    下载: 导出CSV

    表  3  不同黑钨矿石矿物组分的材料属性

    Table  3.   Mineral material properties of different wolframite components

    MineralDensity/(g·cm−3)Poisson’s ratioElastic modulus/GPaConstitutive modelStructural symmetry
    Quartz2.650.134ElastoplasticIsotropic
    Siliceous rock2.720.235ElastoplasticIsotropic
    Tungsten7.250.2035 ElastoplasticIsotropic
    下载: 导出CSV

    表  4  内含物的形态参数

    Table  4.   Inclusion morphological parameters

    MineralShapeVolume fractionAspect ratioDiameter/cm
    Siliceous rockCylinder0.502
    TungstenEllipsoid0.0510.2
    下载: 导出CSV

    表  5  石英-硅质岩界面结点的应力和应变

    Table  5.   Quartz-siliceous rock interface junction stress and strain

    Area of loadingNode No.Stress/GPaStrain/10−4 Area of loadingNode No.Stress/GPaStrain/10−4
    Boundary115981.398791.32 Internal607521.546680.12
    116051.405421.28607531.613140.14
    116101.408671.30*61394 1.589470.26
    116121.155261.06*61396 1.217560.09
    116131.697451.53*61398 1.365770.09
    607461.457941.48*61400 1.621670.30
    607471.639801.53External*61390 0.249880.42
    607481.655261.61*61404 0.230540.38
    607491.612491.58115970.420940.63
    607541.537911.42116010.243540.63
    *61392 1.330851.35116040.321360.47
    *61402 1.194141.29607450.379220.62
    Internal115991.387960.47607500.526460.87
    116081.616470.54607550.293990.55
    116091.300320.25607590.367650.69
    607511.612760.26615200.412910.72
    下载: 导出CSV

    表  6  石英-钨界面结点的应力和应变

    Table  6.   Quartz-tungsten interface junction stress and strain

    Area of loadingNode No.Stress/GPaStrain/10−4 Area of loadingNode No.Stress/GPaStrain/10−4
    Boundary363671.548420.21 Internal608301.961830.54
    363691.583280.24*613491.426061.89
    363701.851870.28*613511.614531.84
    608131.728781.59*613531.267901.46
    608141.983272.18External608100.316630.54
    608151.517711.55608120.370340.64
    608281.916921.96608260.410690.71
    608312.006892.53608290.504120.85
    608362.001152.31613590.586311.02
    *613470.969731.13613610.524180.85
    *613551.482551.90*613330.575040.72
    Internal363661.594340.09*613430.513550.57
    608161.722960.46*613450.677650.95
    608172.143090.82*613571.135981.54
    下载: 导出CSV
  • [1] 张成良, 刘磊, 王超. 高等岩石力学及工程应用 [M]. 长沙: 中南大学出版社, 2016.

    ZHANG C L, LIU L, WANG C. Advanced rock mechanics and engineering application [M]. Changsha: Central South University Press, 2016.
    [2] GAUDIN A M. Principles of mineral dressing [M]. New York: McGraw-Hill, 1939: 70−89.
    [3] 王雅蓉, 周乐光. 相界特征对矿物单体解离度的影响 [J]. 东北大学学报(自然科学版), 1996, 17(3): 88–92.

    WANG Y R, ZHOU L G. Effects of interfacial characteristics on mineral liberation [J]. Journal of Northeastern University (Natural Science), 1996, 17(3): 88–92.
    [4] 刘建远, 应平. 颗粒床压载粉碎对某硫化铜矿石矿物解离的影响 [J]. 有色金属(选矿部分), 2018(5): 81–87. doi: 10.3969/j.issn.1671-9492.2018.05.016

    LIU J Y, YING P. Impact of comminution by particle-bed compressive stressing on mineral liberation of a copper sulfide ore [J]. Nonferrous Metals (Mineral Processing Section), 2018(5): 81–87. doi: 10.3969/j.issn.1671-9492.2018.05.016
    [5] SUN W J, WANG L B, WANG Y Q. Mechanical properties of rock materials with related to mineralogical characteristics and grain size through experimental investigation: a comprehensive review [J]. Frontiers of Structural and Civil Engineering, 2017, 11(3): 322–328. doi: 10.1007/s11709-017-0387-9
    [6] 杨小彬, 周杰, 宋义敏, 等. 循环加载岩石界面滑移位移演化特征试验研究 [J]. 煤炭学报, 2019, 44(10): 3041–3048. doi: 10.13225/j.cnki.jccs.2018.1579

    YANG X B, ZHOU J, SONG Y M, et al. Evolution characteristics of sliding displacement of rock interface under cyclic loading [J]. Journal of China Coal Society, 2019, 44(10): 3041–3048. doi: 10.13225/j.cnki.jccs.2018.1579
    [7] ALNEASAN M, BEHNIA M, BAGHERPOUR R. Analytical investigations of interface crack growth between two dissimilar rock layers under compression and tension [J]. Engineering Geology, 2019, 259: 105188. doi: 10.1016/j.enggeo.2019.105188
    [8] 蔡改贫, 赵小涛. 基于细观力学的矿石颗粒破碎特性研究 [J]. 应用力学学报, 2020, 37(4): 1792–1797. doi: 10.11776/cjam.37.04.B097

    CAI G P, ZHAO X T. Study on the fracture characteristics of ore particles based on micromechanics [J]. Chinese Journal of Applied Mechanics, 2020, 37(4): 1792–1797. doi: 10.11776/cjam.37.04.B097
    [9] 王光勇, 余锐, 马东方, 等. 饱水细砂岩动态抗拉与抗压强度试验对比研究 [J]. 高压物理学报, 2020, 34(4): 044101. doi: 10.11858/gywlxb.20190857

    WANG G Y, YU R, MA D F, et al. Comparative study on dynamic tensile and compressive strength of the saturated fine sandstone [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044101. doi: 10.11858/gywlxb.20190857
    [10] 纪杰杰, 李洪涛, 吴发名, 等. 冲击荷载作用下岩石破碎分形特征 [J]. 振动与冲击, 2020, 39(13): 176–183, 214. doi: 10.13465/j.cnki.jvs.2020.13.026

    JI J J, LI H T, WU F M, et al. Fractal characteristics of rock fragmentation under impact load [J]. Journal of Vibration and Shock, 2020, 39(13): 176–183, 214. doi: 10.13465/j.cnki.jvs.2020.13.026
    [11] 蔡改贫, 宣律伟, 张雪涛, 等. 多尺度内聚颗粒模型破碎过程研究 [J]. 岩土力学, 2020, 41(6): 1809–1817. doi: 10.16285/j.rsm.2019.1218

    CAI G P, XUAN L W, ZHANG X T, et al. Investigation into the crushing process in multi-scale cohesive particle model [J]. Rock and Soil Mechanics, 2020, 41(6): 1809–1817. doi: 10.16285/j.rsm.2019.1218
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  1115
  • HTML全文浏览量:  411
  • PDF下载量:  26
出版历程
  • 收稿日期:  2021-11-03
  • 修回日期:  2021-11-26
  • 录用日期:  2021-12-03
  • 刊出日期:  2022-05-30

目录

    /

    返回文章
    返回