起爆方式对非圆截面装药结构释能特性的影响

张广华 沈飞 刘睿 王辉

张广华, 沈飞, 刘睿, 王辉. 起爆方式对非圆截面装药结构释能特性的影响[J]. 高压物理学报, 2022, 36(3): 035101. doi: 10.11858/gywlxb.20210894
引用本文: 张广华, 沈飞, 刘睿, 王辉. 起爆方式对非圆截面装药结构释能特性的影响[J]. 高压物理学报, 2022, 36(3): 035101. doi: 10.11858/gywlxb.20210894
ZHANG Guanghua, SHEN Fei, LIU Rui, WANG Hui. Influence of Detonation Modes on Energy Release Characteristics of a Charge with a Non-Circular Cross-Sectional Structure[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 035101. doi: 10.11858/gywlxb.20210894
Citation: ZHANG Guanghua, SHEN Fei, LIU Rui, WANG Hui. Influence of Detonation Modes on Energy Release Characteristics of a Charge with a Non-Circular Cross-Sectional Structure[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 035101. doi: 10.11858/gywlxb.20210894

起爆方式对非圆截面装药结构释能特性的影响

doi: 10.11858/gywlxb.20210894
基金项目: 国防重大科研基础专项(20190502)
详细信息
    作者简介:

    张广华(1987-),男,博士,副研究员,主要从事爆炸作用与毁伤技术研究.E-mail:guanghua0611@sina.com

    通讯作者:

    王 辉(1977-),男,硕士,研究员,主要从事炸药爆轰性能试验及理论研究.E-mail:land_wind@163.com

  • 中图分类号: O381; TJ414

Influence of Detonation Modes on Energy Release Characteristics of a Charge with a Non-Circular Cross-Sectional Structure

  • 摘要: 为了研究不同起爆方式下非圆截面装药结构的释能规律,采用AUTODYN软件开展了非圆截面装药结构在不同起爆方式下的释能特性数值模拟,分析了起爆方式对爆轰波形演变、破片质量、破片初速的影响。结果表明:由于装药结构的特殊性,采用端部单点起爆时装药能量分布不均匀,部分区域产生大量的无效小质量破片,且不同位置处的破片初速波动较大;采用端部两点和端部三点起爆时,能够对爆轰能量起到匀化效果,减少无效破片数量,提升破片初速的一致性。由此证明通过调整起爆方式可以对非圆截面装药结构的能量输出结构进行有效调控,对其周向能量场起到匀化效果。

     

  • 图  战斗部截面

    Figure  1.  Cross section of the warhead

    图  不同起爆点位置

    Figure  2.  Positions of different initiation points

    图  有限元模型

    Figure  3.  Finite element model

    图  分幅观测试验布局

    Figure  4.  Test layout for framing observation

    图  数值模拟结果与试验结果的对比

    Figure  5.  Comparison of simulation and test results

    图  不同起爆方式下的爆轰波形演变

    Figure  6.  Evolution of detonation waveforms under different initiation modes

    图  不同起爆方式下的壳体破裂过程

    Figure  7.  Fracturing process of shell under different initiation modes

    图  装药区域划分

    Figure  8.  Area division of a charge

    图  两点起爆时的马赫反射区

    Figure  9.  Mach reflection zones withtwo-endpoint initiation mode

    图  10  破片初速沿径向分布曲线

    Figure  10.  Radial distribution of fragments’ initial velocities

    表  1  不同部件的网格划分

    Table  1.   Meshing of different parts

    PartGrid size/mmElements numberNodes numberGrid quality
    Shell3 9 70212 320≥0.95
    Charge366 94387 695≥0.90
    Air11 450 000 ≥0.95
    下载: 导出CSV

    表  2  空气参数

    Table  2.   Parameters of the air

    $\gamma $$\rho $/(g·cm−3)e/kJpshift/GPa
    1.40.001 225206.80
    下载: 导出CSV

    表  3  炸药参数

    Table  3.   Parameters of the explosive

    DCJ/(km·s−1)pCJ/GPaA/GPaB/GPaR1R2$\omega $E0/(kJ·cm−3)
    7.9829.5524.237.6784.21.10.348.5
    下载: 导出CSV

    表  4  壳体参数

    Table  4.   Parameters of the shell

    A0/MPaB0/MPaCnmT0/KTm/K${\dot \varepsilon}$0/s−1
    7925100.0140.261.032941 7931
    下载: 导出CSV

    表  5  破片质量分布

    Table  5.   Mass distribution of fragments

    Mass range/gFragments number
    Single-endpointTwo-endpointThree-endpoint
    4.0–8.01210 8
    1.0–4.086112 120
    0.8–1.0405262
    0.6–0.8325254
    0.4–0.694104 102
    <0.4254 198 186
    Total518 528 532
    下载: 导出CSV

    表  6  破片速度分布

    Table  6.   Velocity distribution of fragments

    Detonation modeVelocity range/(m·s−1)Average velocity/(m·s−1)Velocity standard deviation/(m·s−1)
    Single-endpoint1 551–1 7581 66064
    Two-endpoint1 572–1 7351 64937
    Three-endpoint1 563–1 7601 65739
    下载: 导出CSV
  • [1] 李元, 赵倩, 熊诗辉, 等. 一种异面棱柱战斗部威力特性的数值模拟 [J]. 含能材料, 2019, 27(2): 97–103. doi: 10.11943/CJEM2018143

    LI Y, ZHAO Q, XIONG S H, et al. Numerical modeling on lethality of a faceted prismatic warhead [J]. Chinese Journal of Energetic Materials, 2019, 27(2): 97–103. doi: 10.11943/CJEM2018143
    [2] 诸德放, 冯长根, 李友, 等. 基于Gurney假设的一种非对称型战斗部破片初速计算 [J]. 弹箭与制导学报, 2006, 26(1): 74–76. doi: 10.3969/j.issn.1673-9728.2006.01.024

    ZHU D F, FENG C G, LI Y, et al. Calculation of first velocity of the unsymmetrical warheadʼ fragment based on Gurney hypothesis [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26(1): 74–76. doi: 10.3969/j.issn.1673-9728.2006.01.024
    [3] 王成, 付晓磊, 宁建国. 起爆方式对聚能射流性能影响的数值分析 [J]. 北京理工大学学报, 2006, 26(5): 401–404. doi: 10.3969/j.issn.1001-0645.2006.05.006

    WANG C, FU X L, NING J G. Numerical simulation of shaped charge jet formation under different ways of initiation [J]. Transactions of Beijing Institute of Technology, 2006, 26(5): 401–404. doi: 10.3969/j.issn.1001-0645.2006.05.006
    [4] 武双章, 顾文彬, 李裕春, 等. 环形向内切割聚能装药射流成型性能研究 [J]. 含能材料, 2017, 25(11): 896–902. doi: 10.11943/j.issn.1006-9941.2017.11.003

    WU S Z, GU W B, LI Y C, et al. Jet formation performance of circular shaped charge of cutting inward [J]. Chinese Journal of Energetic Material, 2017, 25(11): 896–902. doi: 10.11943/j.issn.1006-9941.2017.11.003
    [5] 陈伟, 马宏昊, 沈兆武, 等. 起爆方式对环向聚能射流成型影响的数值模拟 [J]. 高压物理学报, 2015, 29(6): 419–424. doi: 10.11858/gywlxb.2015.06.003

    CHEN W, MA H H, SHEN Z W, et al. Numerical simulation of influence of different modes of initiation on the forming of radial shaped jet [J]. Chinese Journal of High Pressure Physics, 2015, 29(6): 419–424. doi: 10.11858/gywlxb.2015.06.003
    [6] 刘健峰, 龙源, 纪冲, 等. 含偏心起爆对EFP战斗部飞行特性的影响 [J]. 爆炸与冲击, 2015, 35(3): 335–342. doi: 10.11883/1001-1455-(2015)03-0335-08

    LIU J F, LONG Y, JI C, et al. Effect of eccentric initiation on the flight characteristics and ballistic dispersion of EFP [J]. Explosion and Shock Waves, 2015, 35(3): 335–342. doi: 10.11883/1001-1455-(2015)03-0335-08
    [7] RONDOT F. Tracking the “poorness” of a linear shaped charge [C]//23rd International Symposium on Ballistic. Tarragona, Spain: International Ballistic Committee, 2007: 169–176.
    [8] 黄正祥, 张先锋, 陈惠武. 起爆方式对聚能杆式侵彻体成型的影响 [J]. 兵工学报, 2004, 25(3): 289–291. doi: 10.3321/j.issn:1000-1093.2004.03.008

    HUANG Z X, ZHANG X F, CHEN H W. Influence of modes of detonation on the mechanism of jetting projectile charge [J]. Acta Armamentarii, 2004, 25(3): 289–291. doi: 10.3321/j.issn:1000-1093.2004.03.008
    [9] 刘明涛, 汤铁钢, 胡海波, 等. 不同起爆方式下炸药驱动柱壳膨胀断裂的数值模拟 [J]. 爆炸与冲击, 2014, 34(4): 415–420. doi: 10.11883/1001-1455(2014)04-0415-06

    LIU M T, TANG T G, HU H B, et al. Numerical studies of explosion induced cylindrical shell fracture under different detonating modes [J]. Explosion and Shock Waves, 2014, 34(4): 415–420. doi: 10.11883/1001-1455(2014)04-0415-06
    [10] 范中波, 周淑荣, 杭义洪, 等. 爆炸变形式定向战斗部的数值仿真研究 [J]. 兵工学报, 2001, 22(3): 334–337. doi: 10.3321/j.issn:1000-1093.2001.03.013

    FAN Z B, ZHOU S R, HANG Y H, et al. Numerical investigation of detonatively deformable aimable warhead [J]. Acta Armamentarii, 2001, 22(3): 334–337. doi: 10.3321/j.issn:1000-1093.2001.03.013
    [11] 刘琛, 李元, 李燕华, 等. 偏心起爆方式对棱柱形定向战斗部破片飞散规律的影响 [J]. 含能材料, 2017, 25(1): 63–68. doi: 10.11943/j.issn.1006-9941.2017.01.011

    LIU C, LI Y, LI Y H, et al. Influence of eccentric initiation ways on fragment dispersion rule of prismatic aimable warhead [J]. Chinese Journal of Energetic Materials, 2017, 25(1): 63–68. doi: 10.11943/j.issn.1006-9941.2017.01.011
    [12] HELD M. Velocity enhanced warheads [J]. Journal of Explosives and Propellants, 2001, 17(2): 1–12.
    [13] 周唯潇, 王雅君, 于佳鑫, 等. 起爆方式对复合战斗部毁伤输出的影响 [J]. 高压物理学报, 2021, 35(1): 015101. doi: 10.11858/gywlxb.20200593

    ZHOU W X, WANG Y J, YU J X, et al. Effect of initial detonation method on damage power of composite warhead [J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 015101. doi: 10.11858/gywlxb.20200593
    [14] 鲁忠宝, 黎勤, 哈海荣. 不同能量输出结构战斗部水下爆炸毁伤威力试验研究 [J]. 水下无人系统学报, 2019, 27(1): 71–77.

    LU Z B, LI Q, HA H R. Experimental study on underwater explosion damage power of warhead with different energy output configuration [J]. Journal of Unmanned Undersea Systems, 2019, 27(1): 71–77.
    [15] 李贝, 余文力, 王文欣, 等. 中心装药起爆方式对FAE影响的仿真研究 [J]. 兵工自动化, 2014, 33(11): 30–33. doi: 10.7690/bgzdh.2014.11.009

    LI B, YU W L, WANG W X, et al. Simulation and research on influence of center charge ignition method on FAE [J]. Ordnance Industry Automation, 2014, 33(11): 30–33. doi: 10.7690/bgzdh.2014.11.009
    [16] JONATHAN P G, GREG F, COLIN H. Numerical simulation of fragmentation using AUTODYN-2D & 3D in explosive ordnance safety assessment [C]//Proceedings of 6th PARARI International Explosive Ordnance Symposium. Canberra, Australia, 2003.
    [17] 王力, 韩峰, 陈放, 等. 偏心对称起爆战斗部破片初速的增益 [J]. 爆炸与冲击, 2016, 36(1): 69–74. doi: 10.11883/1001-1455(2016)01-0069-06

    WANG L, HAN F, CHEN F, et al. Fragmentsʼ velocity of eccentric warhead with double symmetric detonators [J]. Explosion and Shock Waves, 2016, 36(1): 69–74. doi: 10.11883/1001-1455(2016)01-0069-06
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  1074
  • HTML全文浏览量:  431
  • PDF下载量:  42
出版历程
  • 收稿日期:  2021-10-26
  • 修回日期:  2021-11-04
  • 录用日期:  2021-12-20
  • 刊出日期:  2022-05-30

目录

    /

    返回文章
    返回