锗dc到β-Sn结构的压致相变动力学研究

王碧涵 林传龙 刘旭强 杨文革

王碧涵, 林传龙, 刘旭强, 杨文革. 锗dc到β-Sn结构的压致相变动力学研究[J]. 高压物理学报, 2022, 36(2): 021101. doi: 10.11858/gywlxb.20210893
引用本文: 王碧涵, 林传龙, 刘旭强, 杨文革. 锗dc到β-Sn结构的压致相变动力学研究[J]. 高压物理学报, 2022, 36(2): 021101. doi: 10.11858/gywlxb.20210893
WANG Bihan, LIN Chuanlong, LIU Xuqiang, YANG Wenge. Phase Transition Kinetics of Ge from dc Phase to β-Sn Phase under High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 021101. doi: 10.11858/gywlxb.20210893
Citation: WANG Bihan, LIN Chuanlong, LIU Xuqiang, YANG Wenge. Phase Transition Kinetics of Ge from dc Phase to β-Sn Phase under High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 021101. doi: 10.11858/gywlxb.20210893

锗dc到β-Sn结构的压致相变动力学研究

doi: 10.11858/gywlxb.20210893
基金项目: 国家自然科学基金(U1930401,51527801,51772184,11974033);科学挑战计划(TZ2016001)
详细信息
    作者简介:

    王碧涵(1993-),女,博士,主要从事高压相变动力学研究. E-mail: bihan.wang@hpstar.ac.cn

    通讯作者:

    杨文革(1968-),男,博士,研究员,主要从事材料高压结构与物性研究. E-mail: yangwg@hpstar.ac.cn

  • 中图分类号: O521.2

Phase Transition Kinetics of Ge from dc Phase to β-Sn Phase under High Pressure

  • 摘要: 室温常压下锗是一种具有高载流子迁移率和窄带隙的半导体材料。在高压下,锗具有多种与硅相似的晶相,其有趣的高压行为如压致金属化和超导电性转变引起了高压研究领域的广泛关注。然而,其核心的高压相变动力学机制却鲜有深入研究。利用先进同步辐射光源的高通量X射线衍射结构诊断手段,结合基于金刚石压砧的快速动态压缩技术,研究了锗在高压相变过程中的结构演化机理。采用气膜与压电陶瓷相结合的快速加载方法,实现了数十太帕每秒的压缩速率。采用第三代同步辐射高通量粉光X射线衍射技术,实现了数十微秒时间分辨的结构解析。在相变过程中,新旧相中不同晶面的衍射强度变化存在一定的先后顺序,证实了锗的半导体相(金刚石立方结构)到金属相(β-Sn结构)的转变是位移型相变。此外,通过与静态压缩X射线衍射数据的对比,证实了在此相变过程中不同晶面消失/出现存在先后顺序的行为只能通过动态压缩和动态探测手段观察。

     

  • 图  动态压缩实验装置示意图

    Figure  1.  Schematic diagram of experimental setup for dynamic compression

    图  静高压下Ge从dc到$\,\beta $-Sn相变过程的原位单色XRD积分曲线(图中标注了不同衍射峰对应的晶面指数,以及所用X射线的波长$\lambda $、晶相和所属对称群)

    Figure  2.  In-situ monochromatic XRD integral curves of the phase transition of Ge from dc phase to $\,\beta $-Sn phase under static high pressure (The figure shows the crystal plane index corresponding to diffraction peaks, the wavelength ($\lambda $) of the X-ray used, the crystal phase and the symmetry group.)

    图  动态压缩前后的粉光XRD谱((a)和(c)分别为Ge多晶压缩前、后的XRD谱,对应的晶面用虚线圆弧标记,并用黑色字符标出,明亮的衍射斑点来自样品中的大尺寸晶粒;(b)和(d)为对应的衍射积分图)

    Figure  3.  Pink-beam XRD patterns before and after dynamic compression ((a) and (c) are the XRD patterns of Ge polycrystals before and after compression, respectively. The corresponding crystal planes are marked with dashed arcs and black labels. The bright diffraction spots come from large-sized crystal grains in the sample. (b) and (d) are the corresponding diffraction integral patterns.)

    图  动态加载过程中Ge的XRD谱以及压力随时间的变化:(a) 动态XRD的时间堆叠图,(b) 压力与时间的关系

    Figure  4.  XRD patterns of Ge during dynamic compression and the relationship between pressure and time: (a) the time-stacked diagram of dynamic XRD patterns; (b) the relationship between pressure and time

    图  (a) 动高压下Ge从dc到β-Sn相变过程的原位粉光XRD积分曲线,(b) 动态加载过程中Ge的dc相和 β-Sn相的不同晶面衍射峰归一化强度随时间的变化

    Figure  5.  (a) In-situ pink-beam XRD integral curve of the Ge phase transition from dc phase to β-Sn phase under dynamic compression; (b) the normalized intensity of the diffraction peaks of Ge in the dc phase and β-Sn phase during dynamic compression changes with time

    表  1  静态压缩下10.75 GPa时Ge的晶胞参数

    Table  1.   Unit cell parameters of Ge under static compression at 10.75 GPa

    MethodMediumPhaseacV3(VdcVβ)/Vdc
    Present
    experiment
    Silicone oildc phase5.4692±0.000320.450±0.0020.182±0.001
    (10.75 GPa)
    $\,\beta $-Sn4.9496±0.00082.7322±0.000716.735±0.005
    Other
    experiment[28]
    Methanol-ethanol mixture
    (methanol∶ethanol=4∶1)
    0.189±0.007
    (10.60 GPa)
    下载: 导出CSV
  • [1] MALONE B D, SAU J D, COHEN M L. Ab initio study of the optical properties of Si-Ⅶ [J]. Physical Review B, 2008, 78(16): 161202. doi: 10.1103/PhysRevB.78.161202
    [2] CHEN X J, ZHANG C, MENG Y, et al. β−tin→Imma→sh phase transitions of germanium [J]. Physical Review Letters, 2011, 106(13): 135502. doi: 10.1103/PhysRevLett.106.135502
    [3] MUJICA A, RUBIO A, MUNOZ A, et al. High-pressure phases of group-Ⅳ, Ⅲ-Ⅴ, and Ⅱ-Ⅵ compounds [J]. Reviews of Modern Physics, 2003, 75(3): 863–912. doi: 10.1103/RevModPhys.75.863
    [4] JAMIESON J C. Crystal structures at high pressures of metallic modifications of silicon and germanium [J]. Science, 1963, 139(3556): 762–764. doi: 10.1126/science.139.3556.762
    [5] VOHRA Y K, BRISTER K E, DESGRENIERS S, et al. Phase-transition studies of germanium to 1.25 Mbar [J]. Physical Review Letters, 1986, 56(18): 1944–1947. doi: 10.1103/PhysRevLett.56.1944
    [6] NELMES R J, LIU H, BELMONTE S A, et al. Imma phase of germanium at ~80 GPa [J]. Physical Review B, 1996, 53(6): R2907–R2909. doi: 10.1103/physrevb.53.r2907
    [7] MINOMURA S, DRICKAMER H G. Pressure induced phase transitions in silicon, germanium and some Ⅲ-Ⅴ compounds [J]. Journal of Physics and Chemistry of Solids, 1962, 23(5): 451–456. doi: 10.1016/0022-3697(62)90085-9
    [8] WELBER B. Optical microspectroscopic system for use with a diamond anvil high pressure cell to 200 kilobar [J]. Review of Scientific Instruments, 1976, 47(2): 183–186. doi: 10.1063/1.1134586
    [9] WELBER B, CARDONA M, TSAY Y F, et al. Effect of hydrostatic pressure on the direct absorption edge of germanium [J]. Physical Review B, 1977, 15(2): 875–879. doi: 10.1103/PhysRevB.15.875
    [10] WERNER A, SANJURJO J A, CARDONA M. X-rays investigation of the αβ phase transition in the GexSi1− x solid solutions at high pressure [J]. Solid State Communications, 1982, 44(2): 155–158. doi: 10.1016/0038-1098(82)90420-3
    [11] BAUBLITZ JR M, RUOFF A L. X-ray diffraction from high pressure Ge using synchrotron radiation [J]. Journal of Applied Physics, 1982, 53(8): 5669–5671. doi: 10.1063/1.331451
    [12] QADRI S B, SKELTON E F, WEBB A W. High pressure studies of Ge using synchrotron radiation [J]. Journal of Applied Physics, 1983, 54(6): 3609–3611. doi: 10.1063/1.332434
    [13] OLIJNYK H, SIKKA S K, HOLZAPFEL W B. Structural phase transitions in Si and Ge under pressures up to 50 GPa [J]. Physics Letters A, 1984, 103(3): 137–140. doi: 10.1016/0375-9601(84)90219-6
    [14] GRAHAM R A, JONES O E, HOLLAND J R. Physical behavior of germanium under shock wave compression [J]. Journal of Physics and Chemistry of Solids, 1966, 27(9): 1519–1529. doi: 10.1016/0022-3697(66)90147-8
    [15] GUST W H, ROYCE E B. Axial yield strengths and phase-transition stresses for 〈100〉, 〈110〉, and 〈111〉 germanium [J]. Journal of Applied Physics, 1972, 43(11): 4437–4442. doi: 10.1063/1.1660940
    [16] SEIBOTH F, FLETCHER L B, MCGONEGLE D, et al. Simultaneous 8.2 keV phase-contrast imaging and 24.6 keV X-ray diffraction from shock-compressed matter at the LCLS [J]. Applied Physics Letters, 2018, 112(22): 221907. doi: 10.1063/1.5031907
    [17] RENGANATHAN P, TURNEAURE S J, SHARMA S M, et al. Structural transformations including melting and recrystallization during shock compression and release of germanium up to 45 GPa [J]. Physical Review B, 2019, 99(13): 134101. doi: 10.1103/PhysRevB.99.134101
    [18] HARRIS P. Band-gap collapse in uniaxially strained (shocked) elastic germanium [J]. Journal of Applied Physics, 1980, 51(11): 6033–6034. doi: 10.1063/1.327528
    [19] KATZKE H, BISMAYER U, TOLÉDANO P. Theory of the high-pressure structural phase transitions in Si, Ge, Sn, and Pb [J]. Physical Review B, 2006, 73(13): 134105. doi: 10.1103/PhysRevB.73.134105
    [20] HABERL B, GUTHRIE M, MALONE B D, et al. Controlled formation of metastable germanium polymorphs [J]. Physical Review B, 2014, 89(14): 144111. doi: 10.1103/PhysRevB.89.144111
    [21] STAGER R A, BALCHAN A S, DRICKAMER H G. High-pressure phase transition in metallic tin [J]. The Journal of Chemical Physics, 1962, 37(5): 1154. doi: 10.1063/1.1733235
    [22] LIN C, LIU X, YANG D, et al. Temperature- and rate-dependent pathways in formation of metastable silicon phases under rapid decompression [J]. Physical Review Letters, 2020, 125(15): 155702. doi: 10.1103/PhysRevLett.125.155702
    [23] KLOTZ S, CHERVIN J C, MUNSCH P, et al. Hydrostatic limits of 11 pressure transmitting media [J]. Journal of Physics D: Applied Physics, 2009, 42(7): 075413. doi: 10.1088/0022-3727/42/7/075413
    [24] MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4673–4676. doi: 10.1029/JB091iB05p04673
    [25] ANDERSON O L, ISAAK D G, YAMAMOTO S. Anharmonicity and the equation of state for gold [J]. Journal of Applied Physics, 1989, 65(4): 1534–1543. doi: 10.1063/1.342969
    [26] FAN D, LU L, LI B, et al. Transient X-ray diffraction with simultaneous imaging under high strain-rate loading [J]. Review of Scientific Instruments, 2014, 85(11): 113902. doi: 10.1063/1.4900861
    [27] SUN T, FEZZAA K. HiSPoD: a program for high-speed polychromatic X-ray diffraction experiments and data analysis on polycrystalline samples [J]. Journal of Synchrotron Radiation, 2016, 23(4): 1046–1053. doi: 10.1107/S1600577516005804
    [28] MENONI C S, HU J Z, SPAIN I L. Germanium at high pressures [J]. Physical Review B, 1986, 34(1): 362–368. doi: 10.1103/PhysRevB.34.362
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  899
  • HTML全文浏览量:  499
  • PDF下载量:  59
出版历程
  • 收稿日期:  2021-10-22
  • 修回日期:  2021-11-19

目录

    /

    返回文章
    返回