Numerical Simulation of Deformable Directional Fragment Warhead Performance in Different Expansion Modes
-
摘要: 为使战斗部具有多种定向毁伤模式并实现一定程度上的可控毁伤,提出了一种扇形装药的可变形定向破片战斗部,该战斗部可实现轴向展开和侧向展开2种模式。采用AUTODYN软件进行破片场的数值模拟。首先,基于战斗部单元体分析获得了距离轴心25 mm处的最佳起爆点位置;其次,对整个战斗部进行分析,在轴向展开模式下分析了轴向展开角度对破片飞散速度、破片数目和破片空间分布的影响,发现轴向展开角在60°~75°范围内毁伤效果较佳;最后,在侧向展开模式下分析了整个战斗部的破片速度和破片空间分布情况,结果表明破片具有明显的定向飞散特性。Abstract: In order to enable warhead to have multiple directional damage modes and to achieve a certain degree of controllable damage, a deformable directional fragment warhead with fan-shaped charge is proposed. It can realize an axial-expanding mode and an lateral-expanding mode. The AUTODYN software is used to carry out the numerical simulation of the fragment field. Firstly, the position of the initiation point at 25 mm away from the central axis is determined based on the analysis of the unit constituting the warhead. Secondly, for the axial-expanding mode, the influence of the axial-expansion angle on the fragment flying speed, the quantity and the spatial distribution of fragments are obtained. The results show that the damage effect of the warhead is better when the axial-expansion angle is in the range of 60°–75°. Thirdly, for the lateral-expansion mode, the velocity and the spatial distribution of fregments are analyzed. It showes that the fragments under the lateral-expansion mode have directional flying quality.
-
Key words:
- directional warhead /
- axial-expansion /
- lateral-expansion /
- fragment spatial distribution
-
表 1 材料模型
Table 1. Material models
Component Material Equation of state Strength model Failure model Explosive Comp. B JWL Hydro Casing Steel 4340 Linear Johnson-Cook Principal strain 表 2 Comp. B炸药材料参数
Table 2. Material parameters of Comp. B
$\,\rho $/(g·cm−3) D/(m·s−1) pCJ/GPa A/GPa B/GPa R1 R2 ω 1.717 7980 29.5 524.2 7.678 4.2 1.1 0.34 表 3 4340钢材料参数
Table 3. Material parameters of steel 4340
$\,\rho $/(g·cm−3) IYS/GPa HC/GPa HE SRC RSR BM/GPa SM/GPa 7.83 0.792 0.51 0.26 0.014 1 159 81.8 表 4 密集区破片的平均速度
Table 4. Mean velocity of fragments in dense area
$\,\beta$/(°) Mean velocity/(m∙s−1) d=10 mm d=20 mm d=30 mm d=40 mm d=50 mm d=60 mm 60 1180 1182 1225 1287 1311 1323 75 1302 1332 1343 1366 1376 1401 90 1413 1491 1503 1515 1524 1527 表 5 侧平面飞散角在不同取值区间的破片占比
Table 5. Distribution of fragments at different intervals of dispersion angle in the lateral plane
$\,\beta $/(°) $\delta $min/(°) $\delta $max/(°) $x{_\delta} $/% $\delta $<10° 10°
−20°20°
−30°30°
−40°40°
−50°50°
−60°60°
−70°70°
−80°80°
−90°$\delta $>90° 15 −3.54 33.47 33.26 41.34 22.25 3.15 0 0 0 0 0 0 30 4.24 55.05 6.92 7.14 45.76 31.03 4.02 5.13 0 0 0 0 45 16.76 69.07 0 4.34 5.84 28.35 43.29 13.42 4.76 0 0 0 60 30.98 84.57 0 0 0 13.12 13.62 42.16 25.45 3.34 2.31 0 75 49.99 91.84 0 0 0 0 10.60 21.66 27.19 29.95 9.45 1.15 90 47.75 101.00 0 0 0 0 0.17 8.95 25.99 23.75 29.95 11.19 表 6 飞散角
$\gamma $ 和$\eta $ 在不同取值区间内的碎片数占比Table 6. Fragment distributions at different intervals of dispersion angles
$\gamma $ and$\eta $ $x{_\gamma}$/% $\gamma $max/(°) 0°−5° 5°−10° 10°−15° 15°−20° 20°−25° 25°−30° 30°−35° 35°−40° 40°−45° 57.68 23.41 9.88 3.29 2.32 0.73 0.85 0.61 1.23 44.24 $x{_\eta}$/% $\eta $max/(°) 0°−5° 5°−10° 10°−15° 15°−20° 20°−25° 25°−30° 30°−35° 35°−40° 40°−45° 54.63 30.00 5.24 2.32 5.98 1.59 0.24 0 0 31.34 -
[1] 崔瀚, 张国新. 定向战斗部研究现状及展望 [J]. 飞航导弹, 2019(3): 84–89. [2] 李记刚, 余文力, 王涛. 定向战斗部的研究现状及发展趋势 [J]. 飞航导弹, 2005(5): 25–29. doi: 10.3969/j.issn.1009-1319.2005.05.008 [3] 张天光. 美英定向战斗部的研究与应用 [J]. 航空兵器, 2002, 9(3): 38–41. doi: 10.3969/j.issn.1673-5048.2002.03.013 [4] SAVAGE J C, O'NEAL J K, BROWN R A, et al. Powered low cost autonomous attack system: cooperative, autonomous, wide-area-search munitions with capability to serve as non-traditional ISR assets in a network-centric environment [C]//Proceedings of SPIE 5791, Laser Radar Technology and Applications X. Orlando: SPIE, 2005. [5] 谭多望, 张振宇, 王志兵, 等. 爆炸变形战斗部模型试验研究 [J]. 爆炸与冲击, 2002, 22(3): 247–251. doi: 10.3321/j.issn:1001-1455.2002.03.010TAN D W, ZHANG Z Y, WANG Z B, et al. Investigation of a detonatively deformable warhead [J]. Explosion and Shock Waves, 2002, 22(3): 247–251. doi: 10.3321/j.issn:1001-1455.2002.03.010 [6] MILLER C W. Warhead having selectable axial effects: United States Patent Application, 20150033971 [P]. 2015-02-05. [7] 凌琦, 何勇, 何源, 等. 扇形复合装药驱动破片定向飞散的数值模拟 [J]. 高压物理学报, 2017, 31(05): 557–565.LING Q, HE Y, HE Y, et al. Numerical simulation of directed scattering of fragments driven by sector-shaped double-layer charge [J]. Chinese Journal of High Pressure Physics, 2017, 31(05): 557–565. [8] 洪晓文, 李伟兵, 李文彬, 等. 展开角度及起爆位置对轴向展开式定向战斗部性能的影响 [J]. 含能材料, 2018, 26(5): 383–389.HONG X W, LI W B, LI W B, et al. Effect of expanding angle and initiation position on the performance of axial-expanding directional warhead [J]. Chinese Journal of Energetic Materials, 2018, 26(5): 383–389. [9] 陈闯, 杨丽, 阮凌飞, 等. 展开式EFP战斗部复合破片场成型的数值模拟 [J]. 火炸药学报, 2019, 42(3): 295–302.CHEN C, YANG L, RUAN L F, et al. Numerical simulation on composite fragment field formation of expansion EFP warhead [J]. Chinese Journal of Explosives & Propellants, 2019, 42(3): 295–302. [10] 赵宇哲, 李健, 马天宝. 展开式定向战斗部展开过程实验研究 [J]. 高压物理学报, 2016, 30(2): 116–122.ZHAO Y Z, LI J, MA T B. Experiment on spread processes of the spreadable aimed warhead [J]. Chinese Journal of High Pressure Physics, 2016, 30(2): 116–122. [11] 耿荻, 马天宝, 宁建国. 定向战斗部爆炸驱动规律研究 [J]. 高压物理学报, 2013, 27(5): 685–690. doi: 10.11858/gywlxb.2013.05.005GENG D, MA T B, NING J G. Study on laws of explosive driven behaviors of aimed warhead [J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 685–690. doi: 10.11858/gywlxb.2013.05.005 [12] 马征, 宁建国, 马天宝. 展开型定向战斗部展开过程的理论计算与数值模拟 [J]. 弹箭与制导学报, 2007, 27(1): 111–114. doi: 10.3969/j.issn.1673-9728.2007.01.033MA Z, NING J G, MA T B. Dynamic analysis and numerical simulation for spread process of a evolvable aimed warhead [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2007, 27(1): 111–114. doi: 10.3969/j.issn.1673-9728.2007.01.033 [13] AUTODYN, Autodyn user’s manual [M]. Release 19.0, 2019.