基于增材制造空心点阵结构的压缩变形研究

常超 马桢 褚井泉 侯建峰 张伟伟

常超, 马桢, 褚井泉, 侯建峰, 张伟伟. 基于增材制造空心点阵结构的压缩变形研究[J]. 高压物理学报, 2022, 36(2): 024101. doi: 10.11858/gywlxb.20210885
引用本文: 常超, 马桢, 褚井泉, 侯建峰, 张伟伟. 基于增材制造空心点阵结构的压缩变形研究[J]. 高压物理学报, 2022, 36(2): 024101. doi: 10.11858/gywlxb.20210885
CHANG Chao, MA Zhen, CHU Jingquan, HOU Jianfeng, ZHANG Weiwei. Research on Compression Deformation of Hollow Lattice Structure Based on Additive Manufacturing[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024101. doi: 10.11858/gywlxb.20210885
Citation: CHANG Chao, MA Zhen, CHU Jingquan, HOU Jianfeng, ZHANG Weiwei. Research on Compression Deformation of Hollow Lattice Structure Based on Additive Manufacturing[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024101. doi: 10.11858/gywlxb.20210885

基于增材制造空心点阵结构的压缩变形研究

doi: 10.11858/gywlxb.20210885
基金项目: 国家自然科学基金(11872261)
详细信息
    作者简介:

    常 超(1986-),男,博士,副教授,主要从事微/纳米力学测试技术、冲击动力学研究. E-mail:cc@tyust.edu.cn

  • 中图分类号: O341

Research on Compression Deformation of Hollow Lattice Structure Based on Additive Manufacturing

  • 摘要: 点阵结构具有质量轻、承压性能好、比刚度大等特点,广泛应用于轻量化部件与承压结构。采用选区激光熔覆技术制备了316L不锈钢空心点阵结构,通过准静态压缩实验和有限元数值模拟,研究了含不同尺寸空心微柱的点阵结构在压缩变形时的失效和变形模式及其成因。结果表明:316L不锈钢材料的空心管状结构在点阵压缩过程中无明显压溃失稳,其结构失效模式是由节点失效诱发微柱变形,进而造成整体失效;结构的变形模式为整体均匀变形,但是当壁厚和外径较小时,边界层将因刚度不足而率先变形;增大空心微柱尺寸可使结构刚度增大。

     

  • 图  SLM技术制备的3类样品

    Figure  1.  Three types of samples prepared by SLM technology

    图  准静态压缩实验设备

    Figure  2.  Quasi-static compression experiment equipment

    图  压缩实验的有限元模型

    Figure  3.  Finite element model of compression experiment

    图  数值模拟与压缩实验得到的压缩力-位移曲线

    Figure  4.  Compression force-displacement curves obtained by numerical simulation and compression experiment

    图  节点处应力分布

    Figure  5.  Stress distribution at nodes

    图  3种样品的层间相对位移-时间曲线

    Figure  6.  Relative displacement-time curves of three types of samples

    图  具有不同微柱尺寸的点阵结构的应力-应变曲线

    Figure  7.  Stress-strain curves of lattice structures with different micropillar sizes

    表  1  SLM设备参数[13]

    Table  1.   Parameters of SLM equipment[13]

    Laser power/WScan speed/(m·s−1)Layer thickness/mmScan line width/mmScanning accuracy/mm
    400730–8070–2000.05–0.20
    下载: 导出CSV

    表  2  SLM制备的样品质量

    Table  2.   Mass of samples prepared by SLM

    Categoryh/mmD/mmTheoretical mass/gActual mass/gError/%
    10.31.211.22411.3651.26
    11.2880.57
    11.4682.17
    11.8715.76
    11.6363.67
    20.41.415.90716.0540.92
    16.7835.51
    16.4513.42
    16.9556.59
    15.9940.55
    30.51.620.86221.0410.86
    21.0570.93
    20.9740.54
    21.0060.69
    21.1671.46
    下载: 导出CSV

    表  3  316L不锈钢材料参数[13]

    Table  3.   Parameters of 316L stainless steel material[13]

    $\,\rho$/(g·cm−3)A/MPaB/MPanE/GPa
    7.98436.510750.837180.78
    下载: 导出CSV

    表  4  点阵结构的理论表观密度

    Table  4.   Theoretical apparent density of lattice structures

    D/mmApparent density/(g·cm−3)
    h=0.3 mmh=0.4 mmh=0.5 mm
    1.25.716.937.71
    1.45.006.237.17
    1.64.395.586.57
    下载: 导出CSV

    表  5  有限元模拟的误差分析

    Table  5.   Error analysis of finite element model

    CategoryCompression force/NError/%
    ExperimentSimulation
    1 8399.93 9023.777.43
    217283.5317313.240.17
    332168.9331218.17−2.96
    下载: 导出CSV
  • [1] ZHOU H, CAO X Y, LI C L, et al. Design of self-supporting lattices for additive manufacturing [J]. Journal of the Mechanics and Physics of Solids, 2021, 148: 104298. doi: 10.1016/j.jmps.2021.104298
    [2] CHEN J, WEI H Y, BAO K, et al. Dynamic mechanical properties of 316L stainless steel fabricated by an additive manufacturing process [J]. Journal of Materials Research and Technology, 2021, 11: 170–179. doi: 10.1016/j.jmrt.2020.12.097
    [3] WANG C, LIN X, WANG L L, et al. Cryogenic mechanical properties of 316L stainless steel fabricated by selective laser melting [J]. Materials Science and Engineering: A, 2021, 815: 141317. doi: 10.1016/j.msea.2021.141317
    [4] CAO X F, XIAO D B, LI Y, et al. Dynamic compressive behavior of a modified additively manufactured rhombic dodecahedron 316L stainless steel lattice structure [J]. Thin-Walled Structures, 2020, 148: 106586. doi: 10.1016/j.tws.2019.106586
    [5] LI P, WANG Z, PETRINIC N, et al. Deformation behaviour of stainless steel microlattice structures by selective laser melting [J]. Materials Science and Engineering: A, 2014, 614: 116–121. doi: 10.1016/j.msea.2014.07.015
    [6] ZHANG Y W, LIU T, REN H, et al. Dynamic compressive response of additively manufactured AlSi10Mg alloy hierarchical honeycomb structures [J]. Composite Structures, 2018, 195: 45–59. doi: 10.1016/j.compstruct.2018.04.021
    [7] BUCHANAN C, MATILAINEN V P, SALMINEN A, et al. Structural performance of additive manufactured metallic material and cross-sections [J]. Journal of Constructional Steel Research, 2017, 136: 35–48. doi: 10.1016/j.jcsr.2017.05.002
    [8] FENG J Y, ZHANG P L, JIA Z Y, et al. Microstructures and mechanical properties of reduced activation ferritic/martensitic steel fabricated by laser melting deposition [J]. Fusion Engineering and Design, 2021, 173: 112865. doi: 10.1016/j.fusengdes.2021.112865
    [9] HUANG Y B, YANG S L, GU J X, et al. Microstructure and wear properties of selective laser melting 316L [J]. Materials Chemistry and Physics, 2020, 254: 123487. doi: 10.1016/j.matchemphys.2020.123487
    [10] AGRAWAL A K, DE BELLEFON G M, THOMA D. High-throughput experimentation for microstructural design in additively manufactured 316L stainless steel [J]. Materials Science and Engineering: A, 2020, 793: 139841. doi: 10.1016/j.msea.2020.139841
    [11] KALE A B, ALLURI P, SINGH A K, et al. The deformation and fracture behavior of 316L SS fabricated by SLM under mini V-bending test [J]. International Journal of Mechanical Sciences, 2021, 196: 106292. doi: 10.1016/j.ijmecsci.2021.106292
    [12] BRITT C, MONTGOMERY C J, BRAND M J, et al. Effect of processing parameters and strut dimensions on the microstructures and hardness of stainless steel 316L lattice-emulating structures made by powder bed fusion [J]. Additive Manufacturing, 2021, 40: 101943. doi: 10.1016/j.addma.2021.101943
    [13] 吴伟, 张辉, 曹美文, 等. 仿生BCC结构的准静态压缩数值模拟及吸能性 [J]. 高压物理学报, 2020, 34(6): 062402. doi: 10.11858/gywlxb.20200578

    WU W, ZHANG H, CAO M W, et al. Numerical simulation of quasi-static compression and energy absorption of bionic BCC structure [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 062402. doi: 10.11858/gywlxb.20200578
    [14] KÖHNEN P, HAASE C, BÜLTMANN J, et al. Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel [J]. Materials & Design, 2018, 145: 205–217. doi: 10.1016/j.matdes.2018.02.062
    [15] YIN S, WU L Z, MA L, et al. Pyramidal lattice sandwich structures with hollow composite trusses [J]. Composite Structures, 2011, 93(12): 3104–3111. doi: 10.1016/j.compstruct.2011.06.025
    [16] ZHANG J X, QIN Q H, XIANG C P, et al. Dynamic response of slender multilayer sandwich beams with metal foam cores subjected to low-velocity impact [J]. Composite Structures, 2016, 153: 614–623. doi: 10.1016/j.compstruct.2016.06.059
    [17] ZHANG J X, QIN Q H, XIANG C P, et al. A theoretical study of low-velocity impact of geometrically asymmetric sandwich beams [J]. International Journal of Impact Engineering, 2016, 96: 35–49. doi: 10.1016/j.ijimpeng.2016.05.011
    [18] ZHANG J X, YE Y, QIN Q H, et al. Low-velocity impact of sandwich beams with fibre-metal laminate face-sheets [J]. Composites Science and Technology, 2018, 168: 152–159. doi: 10.1016/j.compscitech.2018.09.018
    [19] ZHANG J X, QIN Q H, ZHANG J T, et al. Low-velocity impact on square sandwich plates with fibre-metal laminate face-sheets: analytical and numerical research [J]. Composite Structures, 2021, 259: 113461. doi: 10.1016/j.compstruct.2020.113461
    [20] WATTS S. Elastic response of hollow truss lattice micro-architectures [J]. International Journal of Solids and Structures, 2020, 206: 472–564. doi: 10.1016/j.ijsolstr.2020.08.018
    [21] XU J, WU Y B, WANG L B, et al. Compressive properties of hollow lattice truss reinforced honeycombs (honeytubes) by additive manufacturing: patterning and tube alignment effects [J]. Materials & Design, 2018, 156: 446–457. doi: 10.1016/j.matdes.2018.07.019
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  996
  • HTML全文浏览量:  684
  • PDF下载量:  58
出版历程
  • 收稿日期:  2021-09-29
  • 修回日期:  2021-10-13
  • 录用日期:  2022-01-17

目录

    /

    返回文章
    返回