固体爆炸作用下地铁站台及围岩的响应规律

王桂林 贺辰昊 欧阳啸天 翟俊 陈相宇

王桂林, 贺辰昊, 欧阳啸天, 翟俊, 陈相宇. 固体爆炸作用下地铁站台及围岩的响应规律[J]. 高压物理学报, 2022, 36(3): 035201. doi: 10.11858/gywlxb.20210874
引用本文: 王桂林, 贺辰昊, 欧阳啸天, 翟俊, 陈相宇. 固体爆炸作用下地铁站台及围岩的响应规律[J]. 高压物理学报, 2022, 36(3): 035201. doi: 10.11858/gywlxb.20210874
WANG Guilin, HE Chenhao, OUYANG Xiaotian, ZHAI Jun, CHEN Xiangyu. Response Law of Subway Platform and Surrounding Rock under Solid Explosion[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 035201. doi: 10.11858/gywlxb.20210874
Citation: WANG Guilin, HE Chenhao, OUYANG Xiaotian, ZHAI Jun, CHEN Xiangyu. Response Law of Subway Platform and Surrounding Rock under Solid Explosion[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 035201. doi: 10.11858/gywlxb.20210874

固体爆炸作用下地铁站台及围岩的响应规律

doi: 10.11858/gywlxb.20210874
基金项目: 国家重点研发计划(2018YFB2101000)
详细信息
    作者简介:

    王桂林(1970-),男,博士,教授,主要从事岩土工程研究. E-mail:glw@cqu.edu.cn

  • 中图分类号: O382

Response Law of Subway Platform and Surrounding Rock under Solid Explosion

  • 摘要: 地铁站内发生爆炸将造成巨大的人员伤亡和财产损失。依托上海某地铁站工程,将HJC模型嵌入开源物质点法程序中,研究了固体炸药爆炸作用下地铁站台及围岩的响应规律。结果表明:受爆炸应力波的影响,站台顶板和底板响应压强在短时间内达到峰值后迅速降低,站台结构在爆炸过程中既存在受拉区又存在受压区;在站台边墙处,由于应力波与反射波叠加,会出现超压突变区;爆炸作用使站台结构整体下沉,且起爆点正下方围岩会形成塌陷坑,起爆点正上方围岩和车站结构相对周围向上隆起;结构受损区域主要集中在结构底板,呈椭圆形;站台有柱区域的抗爆能力强于无柱区域。

     

  • 图  混凝土受损因子云图

    Figure  1.  Nephogram of concrete damage factor

    图  子弹剩余速度对比

    Figure  2.  Comparison of residual velocity of bullet

    图  站台内部结构的BIM模型

    Figure  3.  BIM model of internal structure of the platform

    图  站台无柱区域模型

    Figure  4.  Model of the non-pillar area

    图  站台结构柱模型平面图

    Figure  5.  Plan view of structural column model of the platform

    图  爆炸作用下不同时刻结构顶板和底板的压强分布

    Figure  6.  Pressure distribution of the top and bottom plates of the structure at various times under the explosion loading

    图  站台结构顶板中心点处压强随时间变化曲线及局部放大图

    Figure  7.  Pressure curve at the center point of the top plate with time and its partial enlarged view

    图  站台结构底板中心点处压强随时间变化曲线及局部放大图

    Figure  8.  Pressure curve at the center point of the bottom plate with time and its partial enlarged view

    图  爆炸超压分布

    Figure  9.  Distribution of explosion overpressure

    图  10  人员伤亡区域预测分布

    Figure  10.  Regional distribution of casualties

    图  11  400 ms时横向和竖向上站台及围岩的位移分布

    Figure  11.  Displacement distributions of platform and surrounding rock in horizontal and vertical directions at 400 ms

    图  12  站台结构顶板和底板的竖向位移分布

    Figure  12.  Vertical displacement distributions of the top and bottom plates of the platform structure

    图  13  站台底板下部深坑深度随时间变化曲线

    Figure  13.  Curve of pit depth under platform bottom plate with time

    图  14  围岩表面质点的相对位移随时间变化曲线

    Figure  14.  Curves of relative displacement of surrounding rock surface particles with time

    图  15  站台受损因子云图

    Figure  15.  Nephogram of the damage factor of the platform floor

    表  1  混凝土结构的HJC模型参数

    Table  1.   HJC model parameters of concrete structure

    $\,\rho $/(kg·m–3)E/GPa$\nu $${ f{'_ {\rm{c} } } }$/MPaSmaxABNC$\varepsilon {_{\min }^{\rm f} }$
    243932.50.2487.00.791.60.610.0070.01
    pcrush/GPaplock/GPaD1D2K1/GPaK2/GPaK3/GPavp/(m·s−1)vs/(m·s−1)
    0.0160.80.04185−17120838722375
    下载: 导出CSV

    表  2  围岩的物理力学参数

    Table  2.   Physical and mechanical parameters of surrounding rock

    $\,\rho $/(kg·m–3)E/GPa$\nu $$q{_{\phi}}$/(°)$K{_{\phi}}$$q{_{\varPsi} }$/(°)$\sigma $t/kPavp/(m·s−1)vs/(m·s−1)
    18500.040.350.3881117100.118589
    下载: 导出CSV

    表  3  空气(空模型)的物理力学参数

    Table  3.   Physical and mechanical parameters of air (air model)

    $\,\rho $/(kg·m–3)c/(m·s−1)E0/(MJ·m–3)$\kappa $vp/(m·s−1)vs/(m·s−1)
    1.2934001.43400
    下载: 导出CSV

    表  4  固体爆炸物参数

    Table  4.   Calculation parameters of solid explosives

    $\,\rho $0/(kg·m–3)e0/(GJ·m–3)pCJ/GPa$\gamma $DJ/(m·s–1)
    15007.0212.7276930
    AJWL/GPaBJWL/GPaR1R2$\omega $
    371.23.234.150.950.30
    下载: 导出CSV

    表  5  超压模拟结果与经验公式计算结果对比

    Table  5.   Comparison of overpressure simulation results and empirical formula calculation results

    Distance/mOverpressure/MPaError/%
    Theoretical formulaNumerical simulation
    52.352.254.44
    10 0.470.52−7.69
    下载: 导出CSV

    表  6  站台有柱区域和无柱区域在固体爆炸作用下结构参数的对比

    Table  6.   Comparison of various parameters under the solid explosion in the pillared and non-pillared areas of the platform

    Areapm/MPaRd/mndCd/m2pr/MPapf1/MPa
    With volumns6.581.00215.025218.0
    Without volumns6.050.67135.667110.5
    Error/%−7.69−37.50−33.00−38.1012.78−49.31
    Areapf2/MPadr/mdf1/mdf2/MPadp/m
    With volumns0.0340.1240.1880.0371.64
    Without volumns0.0410.0840.1030.0890.43
    Error/%20.59−32.26−45.21140.54−73.78
    下载: 导出CSV
  • [1] 城市轨道交通2017年度统计和分析报告 [J]. 城市轨道交通, 2018(4): 6−25.

    Statistics and analysis report of urban rail transit in 2017 [J]. China Metros, 2018(4): 6−25.
    [2] 王勇, 王德荣, 陈灿寿, 等. 某地铁区间隧道内爆炸效应的数值模拟 [J]. 防护工程, 2006, 28(6): 55–58.

    WANG Y, WANG D R, CHEN C S, et al. Numerical simulation on interior blasting effect in the section of tunnel in some subway [J]. Protective Engineering, 2006, 28(6): 55–58.
    [3] CHOI S, WANG J, MUNFAKH G, et al. 3D nonlinear blast model analysis for underground structures [C]//GeoCongress 2006. Atlanta, Georgia, USA: ASCE, 2006.
    [4] ZHANG X X, CHENG J W, SHI C L, et al. Numerical simulation studies on effects of explosion impact load on underground mine seal [J]. Mining, Metallurgy & Exploration, 2020, 37(2): 665–680. doi: 10.1007/s42461-019-00143-2
    [5] 柴永生, 王月桂, 章毅. 地铁口部爆炸冲击波传播规律与超压荷载研究 [J]. 防护工程, 2019, 41(1): 42–46.

    CHAI Y S, WANG Y G, ZHANG Y. Study on propagation of blast wave and the overpressure load subjected to metro entrance explosion [J]. Protective Engineering, 2019, 41(1): 42–46.
    [6] 王桂林, 欧阳啸天, 翟俊, 等. 浅埋三舱管廊甲烷爆炸的地面响应规律 [J]. 高压物理学报, 2021, 35(1): 015202. doi: 10.11858/gywlxb.20200616

    WANG G L, OUYANG X T, ZHAI J, et al. Ground response law of methane explosion in shallow buried three-cabin pipe gallery [J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 015202. doi: 10.11858/gywlxb.20200616
    [7] 张雄, 廉艳平, 刘岩, 等. 物质点法 [M]. 北京: 清华大学出版社, 2013: 31−32.

    ZHANG X, LIAN Y P, LIU Y, et al. Material point method [M]. Beijing: Tsinghua University Press, 2013: 31−32.
    [8] 陈卫东, 杨文淼, 张帆. 基于物质点法的水下爆炸冲击波数值模拟 [J]. 高压物理学报, 2013, 27(6): 813–820. doi: 10.11858/gywlxb.2013.06.004

    CHEN W D, YANG W M, ZHANG F. Material point method for numerical simulation of underwater explosion blast wave [J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 813–820. doi: 10.11858/gywlxb.2013.06.004
    [9] 王宇新, 陈震, 张洪武, 等. 多层抗爆结构冲击响应无网格MPM法分析 [J]. 工程力学, 2007, 24(12): 186–192. doi: 10.3969/j.issn.1000-4750.2007.12.032

    WANG Y X, CHEN Z, ZHANG H W, et al. Response of multi-layered structure due to impact load using material point method [J]. Engineering Mechanics, 2007, 24(12): 186–192. doi: 10.3969/j.issn.1000-4750.2007.12.032
    [10] 张芮瑜, 孙玉进, 宋二祥. 强夯的物质点法模拟及其能量转化规律分析 [J]. 岩土工程学报, 2019, 41(7): 1208–1216. doi: 10.11779/CJGE201907004

    ZHANG R Y, SUN Y J, SONG E X. Simulation of dynamic compaction using material point method and analysis of its energy conversion law [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1208–1216. doi: 10.11779/CJGE201907004
    [11] 董友扣, 马家杰, 王栋, 等. 深海滑坡灾害的物质点法模拟 [J]. 海洋工程, 2019, 37(5): 141–147. doi: 10.16483/j.issn.1005-9865.2019.05.016

    DONG Y K, MA J J, WANG D, et al. Investigation of landslide in deep sea using material point method [J]. The Ocean Engineering, 2019, 37(5): 141–147. doi: 10.16483/j.issn.1005-9865.2019.05.016
    [12] HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths [J]. International Journal of Impact Engineering, 1992, 12(1): 1–7. doi: 10.1016/0734-743X(92)90282-X
    [13] 李科斌, 董新龙, 李晓杰, 等. 水下爆炸实验法在工业炸药JWL状态方程测定中的应用研究 [J]. 兵工学报, 2020, 41(3): 488–494. doi: 10.3969/j.issn.1000-1093.2020.03.009

    LI K B, DONG X L, LI X J, et al. Research on parameters determination of JWL EOS for commercial explosives based on underwater explosion test [J]. Acta Armamentarii, 2020, 41(3): 488–494. doi: 10.3969/j.issn.1000-1093.2020.03.009
    [14] 李志鹏. 瓦斯爆炸作用下隧道衬砌致损机理及修复技术研究 [D]. 北京: 北京科技大学, 2019.

    LI Z P. Study on damage mechanism and repair technology of tunnel lining subject to gas explosion [D]. Beijing: University of Science and Technology, 2019.
    [15] 涂国勇, 王海锋, 禄晓飞, 等. 整体爆破弹头爆炸当量定量评价研究 [J]. 现代防御技术, 2020, 48(2): 30–34. doi: 10.3969/j.issn.1009-086x.2020.02.005

    TU G Y, WANG H F, LU X F, et al. Explosion equivalent quantitative evaluation of global blowup warhead [J]. Modern Defense Technology, 2020, 48(2): 30–34. doi: 10.3969/j.issn.1009-086x.2020.02.005
    [16] 张程娇. 炸药爆轰产物参数的特征线差分反演方法研究 [D]. 大连: 大连理工大学, 2016.

    ZHANG C J. Research of inversion method of detonation products physical parameters based on modified method of characteristics [D]. Dalian: Dalian University of Technology, 2016.
    [17] 闫秋实, 刘晶波, 伍俊. 典型地铁车站内爆炸致人员伤亡区域的预测研究 [J]. 工程力学, 2012, 29(2): 81–88.

    YAN Q S, LIU J B, WU J. Estimation of casualty areas in subway station subjected to terrorist bomb [J]. Engineering Mechanics, 2012, 29(2): 81–88.
    [18] HENRYCH J. The dynamics of explosion and its use [M]. Amsterdam: Elsevier Scientific Publishing Company, 1979: 178−181.
    [19] BRODE H L. Blast wave from a spherical charge [J]. Physics of Fluids, 1959, 2(2): 217. doi: 10.1063/1.1705911
    [20] SADOVSKYI M A. Mechanical action of air shock waves of explosion based on experimental data [M]. Moscow: Izd Akad Nauk SSSR, 1952.
    [21] WU C Q, HAO H. Modeling of simultaneous ground shock and airblast pressure on nearby structures from surface explosions [J]. International Journal of Impact Engineering, 2005, 31(6): 699–717. doi: 10.1016/j.ijimpeng.2004.03.002
    [22] 师光达. 化工园区危险性评价研究 [D]. 沈阳: 沈阳理工大学, 2020.

    SHI G D. Study on risk assessment of chemical industry park [D]. Shenyang: Shenyang Ligong University, 2020.
    [23] 王新建. 爆炸中缺口效应及其防护研究 [J]. 中国人民公安大学学报(自然科学版), 2008, 14(3): 88–90.

    WANG X J. Study on explosion notch effect and its protecton [J]. Journal of Chinese People’s Public Security University (Science and Technology), 2008, 14(3): 88–90.
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  1068
  • HTML全文浏览量:  592
  • PDF下载量:  32
出版历程
  • 收稿日期:  2021-09-09
  • 修回日期:  2021-10-14
  • 刊出日期:  2022-05-30

目录

    /

    返回文章
    返回