蓄能器壳体的塑性极限载荷和失效分析

蔡鹏辉 李靖琳 沈正祥 翟彬彬 吴彩保 黄焕东 宋鹏飞

蔡鹏辉, 李靖琳, 沈正祥, 翟彬彬, 吴彩保, 黄焕东, 宋鹏飞. 蓄能器壳体的塑性极限载荷和失效分析[J]. 高压物理学报, 2022, 36(3): 034203. doi: 10.11858/gywlxb.20210867
引用本文: 蔡鹏辉, 李靖琳, 沈正祥, 翟彬彬, 吴彩保, 黄焕东, 宋鹏飞. 蓄能器壳体的塑性极限载荷和失效分析[J]. 高压物理学报, 2022, 36(3): 034203. doi: 10.11858/gywlxb.20210867
CAI Penghui, LI Jinglin, SHEN Zhengxiang, ZHAI Binbin, WU Caibao, HUANG Huandong, SONG Pengfei. Plastic Limit Load and Failure of Accumulator Shell[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 034203. doi: 10.11858/gywlxb.20210867
Citation: CAI Penghui, LI Jinglin, SHEN Zhengxiang, ZHAI Binbin, WU Caibao, HUANG Huandong, SONG Pengfei. Plastic Limit Load and Failure of Accumulator Shell[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 034203. doi: 10.11858/gywlxb.20210867

蓄能器壳体的塑性极限载荷和失效分析

doi: 10.11858/gywlxb.20210867
基金项目: 浙江省基础公益研究计划(LGF21E040003);浙江省市场监督管理局科研计划(20190330);宁波市质量技术监督局科技项目(2019)
详细信息
    作者简介:

    蔡鹏辉(1993—),男,本科,助理工程师,主要从事蓄能器型式试验研究. E-mail:1187998066@qq.com

    通讯作者:

    沈正祥(1984—),男,博士,副研究员,主要从事特种设备安全技术研究. E-mail:shenzx84@163.com

  • 中图分类号: O347.3; TQ053.2

Plastic Limit Load and Failure of Accumulator Shell

  • 摘要: 结构完整性是液压蓄能器设计制造的重要依据,为确定内压作用下某蓄能器壳体的最大承载能力,采用弹塑性理论分析、数值仿真与试验研究相结合的方法,对壳体塑性极限载荷和失效位置进行研究。结果显示:由于未考虑壁厚的影响,理想弹塑性分析结果明显偏高;尽管忽略了应变强化效应,但是通过荷载因子逐步加载,非线性有限元仿真得出的极限载荷仍然比较接近爆破试验实测值,误差仅为3.5%,并且预测的塑性失效位置与实际破口部位基本一致,说明非线性有限元Risk法能够获得更符合实际的结果,可用于简单薄壁压力容器的分析设计。

     

  • 图  蓄能器产品及其壳体

    Figure  1.  Accumulator product and the shell

    图  35CrMo钢的拉伸应力-应变曲线

    Figure  2.  Tensile stress-strain curve of 35CrMo steel

    图  理想弹塑性材料的本构模型

    Figure  3.  Constitutive model of perfect elastoplastic material

    图  数值模型

    Figure  4.  Numerical model

    图  Mises应力分布(弧长为20.97)

    Figure  5.  Mises stress distribution (The arc length is 20.97)

    图  等效塑性应变分布(弧长为20.97)

    Figure  6.  Equivalent plastic strain distribution (The arc length is 20.97)

    图  塑性极限载荷比例因子

    Figure  7.  Plastic limit load proportionality factor

    图  爆破试验装置示意图

    Figure  8.  Schematic diagram of blasting test device

    图  静态爆破压力时程曲线

    Figure  9.  Static blast pressure-time curve

    图  10  壳体的失效位置

    Figure  10.  Failure position of the shell

    表  1  主要计算参数

    Table  1.   Main calculation parameters

    p0/MPaD0/mmDi/mmt/mmL/mm$\sigma\rm _y$/MPa$\sigma\rm_b$/MPa
    91.762299.0270.214.4971820946
    下载: 导出CSV

    表  2  不同方法得到的极限载荷对比

    Table  2.   Comparison of limit loads obtained with different methods

    Limit load/MPa Burst pressure
    (test)/MPa
    TestFinite element simulationElasto-plastic analysis
    92.295.496.7 105.9
    下载: 导出CSV
  • [1] 涂善东, 轩福贞. 高温承压设备结构完整性技术 [J]. 压力容器, 2005, 22(11): 39–47. doi: 10.3969/j.issn.1001-4837.2005.11.011

    TU S T, XUAN F Z. Structural integrity technology for high temperature pressurized equipment [J]. Pressure Vessel Technology, 2005, 22(11): 39–47. doi: 10.3969/j.issn.1001-4837.2005.11.011
    [2] 肖飚,杨斌,胡超杰,等. 基于埋入式应变片的纤维缠绕压力容器的健康监测 [J]. 高压物理学报, 2019, 33(4): 043401. doi: 10.11858/gywlxb.20190726

    XIAO B, YANG B, HU C J, et al. Structural health monitoring of filament wound pressure vessel by embedded strain gauges [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 043401. doi: 10.11858/gywlxb.20190726
    [3] FAUPEL J H. Yield and bursting characteristics of heavy-wall cylinders [J]. ASME Journal of Applied Mechanics, 1956, 23: 1031–1064.
    [4] BRABIN T A, CHRISTOPHER T, RAO B N. Bursting pressure of mild steel cylindrical vessels [J]. International Journal of Pressure Vessels and Piping, 2011, 88(2/3): 119–122. doi: 10.1016/j.ijpvp.2011.01.001
    [5] ZHENG C X, LEI S H. Research on bursting pressure formula of mild steel pressure vessel [J]. Journal of Zhejiang University: Science A, 2006, 7: 277–281. doi: 10.1631/jzus.2006.AS0277
    [6] SVENSSON N. Bursting pressure of cylindrical and spherical vessels [J]. ASME Journal of Applied Mechanics, 1958, 25(80): 89–96.
    [7] CHRISTOPHER T, SARMA B, POTTI P, et al. A comparative study on failure pressure estimations of unflawed cylindrical vessels [J]. International Journal of Pressure Vessels and Piping, 2002, 79(1): 53–66. doi: 10.1016/S0308-0161(01)00126-0
    [8] BRABIN T A, CHRISTOPHER T, RAO B N. Investigation on failure behavior of unflawed steel cylindrical pressure vessels using FEA [J]. Multidiscipline Modeling in Materials & Structures, 2009, 5(1): 29–42.
    [9] CHEN Z F, LI X Y, WANG W, et al. Dynamic burst pressure analysis of cylindrical shells based on average shear stress yield criterion [J]. Thin-Walled Structures, 2020, 148(4): 106498.
    [10] DWIVEDI N, KUMAR V, SHRIVASTAVA A, et al. Burst pressure assessment of pressure vessel using finite element analysis: a review [J]. Journal of Pressure Vessel Technology, 2013, 135(4): 044502. doi: 10.1115/1.4023422
    [11] EVANS C J, MILLER T F. Failure prediction of pressure vessels using finite element analysis [J]. Journal of Pressure Vessel Technology, 2015, 137(5): 051206. doi: 10.1115/1.4029192
    [12] HUANG X, CHEN Y, KAI L, et al. Burst strength analysis of casing with geometrical imperfections [J]. Journal of Pressure Vessel Technology, 2007, 129(4): 763–770. doi: 10.1115/1.2767370
    [13] KAMAYA M, SUZUKI T, MESHII T. Failure pressure of straight pipe with wall thinning under internal pressure [J]. International Journal of Pressure Vessels and Piping, 2008, 85(9): 628–634. doi: 10.1016/j.ijpvp.2007.11.005
    [14] YASIN K. Burst pressure determination of vehicle toroidal oval cross-section LPG fuel tanks [J]. Journal of Pressure Vessel Technology, 2011, 133(3): 031202. doi: 10.1115/1.4002863
    [15] MOUSTABCHIR H, ARBAOUI J, AZARI Z, et al. Experimental/numerical investigation of mechanical behaviour of internally pressurized cylindrical shells with external longitudinal and circumferential semi-elliptical defects [J]. Alexandria Engineering Journal, 2018, 57(3): 1339–1347. doi: 10.1016/j.aej.2017.05.022
    [16] 张春燕. 承压设备圆柱形筒体壁厚计算方法的选择 [J]. 天然气与石油, 2006, 24(1): 60–63. doi: 10.3969/j.issn.1006-5539.2006.01.017

    ZHANG C Y. Selection of calculation method for wall thickness of cylinder body in pressure equipment [J]. Natural Gas and Oil, 2006, 24(1): 60–63. doi: 10.3969/j.issn.1006-5539.2006.01.017
    [17] 刘福林. 用加权余量法分析固支圆板和环板在Mises屈服条件下的极限荷载 [J]. 计算力学学报, 2002, 19(3): 369–372. doi: 10.3969/j.issn.1007-4708.2002.03.023

    LIU F L. Calculation of limit loads for circular and annular plates by method of weighted residuals [J]. Chinese Journal of Computational Mechanics, 2002, 19(3): 369–372. doi: 10.3969/j.issn.1007-4708.2002.03.023
    [18] 姜雅洲. 压力容器爆破压力数值模拟与试验研究 [D]. 杭州: 浙江工业大学, 2015.

    JIANG Y Z. Numerical simulation and experimental study of burst pressure of pressure vessel [D]. Hangzhou: Zhejiang University of Technology, 2015.
    [19] 陆明万, 寿比南, 杨国义. 压力容器分析设计的塑性分析方法 [J]. 压力容器, 2011, 28(1): 33–39. doi: 10.3969/j.issn.1001-4837.2011.01.007

    LU M W, SHOU B N, YANG G Y. Plastic analysis methods for design by analysis of pressure vessels [J]. Pressure Vessel Technology, 2011, 28(1): 33–39. doi: 10.3969/j.issn.1001-4837.2011.01.007
    [20] 周波. 基于应变强化的容器爆破压力研究[D]. 南京: 南京工业大学, 2010

    ZHOU B. Study on the burst pressure of vessels based on strain hardening of material [D]. Nanjing: Nanjing University of Technology, 2010.
    [21] 沈鋆. 极限载荷分析法在压力容器分析设计中的应用 [J]. 石油化工设备, 2011, 40(4): 35–38. doi: 10.3969/j.issn.1000-7466.2011.04.010

    SHEN J. Limit load analysis application in pressure vessel analytical design [J]. Petro-Chemical Equipment, 2011, 40(4): 35–38. doi: 10.3969/j.issn.1000-7466.2011.04.010
    [22] 刘岑,吴森林,杨帆,等. 超高压容器爆破压力计算公式的精度比较 [J]. 压力容器, 2019, 36(5): 43–49. doi: 10.3969/j.issn.1001-4837.2019.05.007

    LIU C, WU S L, YANG F, et al. Precision comparison of calculation formulas for ultra-high pressure vessel burst pressure [J]. Pressure Vessel Technology, 2019, 36(5): 43–49. doi: 10.3969/j.issn.1001-4837.2019.05.007
    [23] 徐伟, 迟明, 张宗政. 基于ABAQUS的三通接头应力分析和评定 [J]. 装备制造技术, 2019, 1: 71–73. doi: 10.3969/j.issn.1672-545X.2019.01.018

    XU W, CHI M, ZHANG Z Z. The stress analysis and assessment of the tee based on ABAQUS [J]. Equipment Manufacturing Technology, 2019, 1: 71–73. doi: 10.3969/j.issn.1672-545X.2019.01.018
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1516
  • HTML全文浏览量:  384
  • PDF下载量:  27
出版历程
  • 收稿日期:  2021-08-18
  • 修回日期:  2021-08-31
  • 刊出日期:  2022-05-30

目录

    /

    返回文章
    返回