基于多参量判据的深地下工程岩爆倾向性研究

张恒源 范俊奇 郭佳奇 石晓燕 孙飞跃

张恒源, 范俊奇, 郭佳奇, 石晓燕, 孙飞跃. 基于多参量判据的深地下工程岩爆倾向性研究[J]. 高压物理学报, 2022, 36(2): 025202. doi: 10.11858/gywlxb.20210857
引用本文: 张恒源, 范俊奇, 郭佳奇, 石晓燕, 孙飞跃. 基于多参量判据的深地下工程岩爆倾向性研究[J]. 高压物理学报, 2022, 36(2): 025202. doi: 10.11858/gywlxb.20210857
ZHANG Hengyuan, FAN Junqi, GUO Jiaqi, SHI Xiaoyan, SUN Feiyue. Rockburst Tendency for Deep Underground Engineering Based on Multi-Parameters Criterion[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025202. doi: 10.11858/gywlxb.20210857
Citation: ZHANG Hengyuan, FAN Junqi, GUO Jiaqi, SHI Xiaoyan, SUN Feiyue. Rockburst Tendency for Deep Underground Engineering Based on Multi-Parameters Criterion[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025202. doi: 10.11858/gywlxb.20210857

基于多参量判据的深地下工程岩爆倾向性研究

doi: 10.11858/gywlxb.20210857
基金项目: 国家自然科学基金(51778215,51474097,U1810203)
详细信息
    作者简介:

    张恒源(1998-),男,硕士研究生,主要从事隧道与地下工程防灾减灾研究.E-mail: zhy983@163.com

    通讯作者:

    范俊奇(1975-),男,博士,副研究员,主要从事防护工程、岩土工程加固相关研究.E-mail:lyfjq@163.com

  • 中图分类号: O382; TU45

Rockburst Tendency for Deep Underground Engineering Based on Multi-Parameters Criterion

  • 摘要: 依据岩石破坏的能量转化机制和单元整体破坏准则,提出了同时考虑岩石内部积聚的可释放应变能、岩石破坏所需的表面能临界值及脆性系数的多参量岩爆判据。基于三维离散元(3DEC)数值仿真平台,对上述岩爆判据进行了二次开发,研究了在不同埋深、不同侧压力系数下深地下工程在开挖扰动时的围岩主应力差、能量及岩爆倾向性响应特征。结果表明:围岩的主应力差较大值多集中在洞室拱顶,弹性应变能密度较大值多集中在洞室拱顶和拱脚处;随着埋深和侧压力系数的增加,岩爆判据指标的数值和较大值的分布范围均增大。为了验证所提岩爆判据和数值模拟方法的合理性与适用性,对锦屏二级水电站4#引水隧洞岩爆灾害进行了数值模拟与分析,发现岩爆灾害强弱程度及发生位置与工程实际情况相符。研究结果为深地下工程岩爆灾害的预测预报和有效防控提供了理论支持和技术指导。

     

  • 图  单位体积中的能量耗散Uid和可释放应变能Uie的量值关系

    Figure  1.  Quantitative relationship between released strain energy Uid and dissipated energy Uie per unit volume

    图  隧道数值计算模型

    Figure  2.  Numerical calculation model for tunnel

    图  数值计算模型中监测点位置

    Figure  3.  Locations of the monitoring points in the numerical model

    图  不同工况下数值模拟的主应力差云图

    Figure  4.  Contour maps of the principal stress difference under different conditions obtained by numerical simulation

    图  弹性应变能密度分布

    Figure  5.  Distribution of the elastic strain energy density

    图  弹性应变能密度的时空分布

    Figure  6.  Spatial and temporal distribution of the elastic strain energy density

    图  岩爆倾向性指标 Crs的分布云图

    Figure  7.  Distribution cloud map of the rockburst judgement index Crs

    图  锦屏二级水电站4#引水隧洞断面尺寸及岩爆洞段现场

    Figure  8.  Dimension of the tunel 4# of Jinping II Hydropower Station and the rockburst cavern

    图  4#引水隧洞模拟结果

    Figure  9.  Simulation results of 4# headrace tunnel

    表  1  岩体物理力学参数

    Table  1.   Physical and mechanical parameters of rock mass

    Materialh/m$ {\sigma _{\text{c}}} $/MPa$ {\sigma _{\text{t}}} $/MPaE/GPaμ
    Granite600141.5622.2261.010.23
    1200186.8721.2556.330.24
    1800212.1819.1350.090.25
    下载: 导出CSV

    表  2  数值模拟工况

    Table  2.   Numerical simulation conditions

    Condition h/m K Condition h/m K Condition h/m K
    16001.0 4 12001.0 7 18001.0
    26001.55 12001.5 8 18001.5
    36001.56 1200 2.0 9 1800 2.0
    下载: 导出CSV

    表  3  岩爆洞段的地应力状态

    Table  3.   In-situ stress state in the cross section of the rockburst cavern

    Burial depth/m${\sigma _x}/{\text{MPa}}$${\sigma _y}/{\text{MPa}}$${\sigma _\textit{z}}/{\text{MPa} }$${\tau _{xy}}/{\text{MPa}}$${\tau _{y\textit{z}} }/{\text{MPa} }$${\tau _{\textit{z}x} }/{\text{MPa} }$
    1 900−49.81−51.68−58.09−15.00−1.237.17
    下载: 导出CSV

    表  4  岩体力学参数

    Table  4.   Mechanical parameters of rock mass

    E/GPaμcp/MPacr/MPaφi/(°)φp/(°)ψ/(°)
    27.620.25634.369.8729.9339.2329.20
    下载: 导出CSV
  • [1] 张镜剑, 傅冰骏. 岩爆及其判据和防治 [J]. 岩石力学与工程学报, 2008, 27(10): 2034–2042. doi: 10.3321/j.issn:1000-6915.2008.10.010

    ZHANG J J, FU B J. Rockburst and its criteria and control [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(10): 2034–2042. doi: 10.3321/j.issn:1000-6915.2008.10.010
    [2] 冯夏庭, 肖亚勋, 丰光亮, 等. 岩爆孕育过程研究 [J]. 岩石力学与工程学报, 2019, 38(4): 649–673.

    FENG X T, XIAO Y X, FENG G L, et al. Study on the development process of rockbursts [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 649–673.
    [3] 魏新江, 陈涛涛, 王霄, 等. 岩爆灾害研究与进展 [J]. 现代隧道技术, 2020, 57(2): 1–12.

    WEI X J, CHEN T T, WANG X, et al. Progress in research of the rockburst hazard [J]. Modern Tunnelling Technology, 2020, 57(2): 1–12.
    [4] 冯夏庭, 陈炳瑞, 张传庆, 等. 岩爆孕育过程的机制、预警与动态调控 [M]. 北京: 科学出版社, 2013.

    FENG X T, CHEN B R, ZHANG C Q, et al. Mechanism, warning and dynamic control of rockburst development processes [M]. Beijing: Science Press, 2013.
    [5] 邓思文, 陈恩瑜, 马池帅, 等. 基于地应力实测与能量判据的深埋隧道岩爆预测 [J]. 人民长江, 2016, 47(21): 62–66.

    DENG S W, CHEN E Y, MA C S, et al. Study on rock-burst prediction for deep TBM tunnel excavation based on geostress measurement and energy criterion [J]. Yangtze River, 2016, 47(21): 62–66.
    [6] 江飞飞, 周辉, 刘畅, 等. 地下金属矿山岩爆研究进展及预测与防治 [J]. 岩石力学与工程学报, 2019, 38(5): 956–972.

    JIANG F F, ZHOU H, LIU C, et al. Progress, prediction and prevention of rockbursts in underground metal mines [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(5): 956–972.
    [7] 李鹏翔, 陈炳瑞, 周扬一, 等. 硬岩岩爆预测预警研究进展 [J]. 煤炭学报, 2019, 44(Suppl 2): 447–465.

    LI P X, CHEN B R, ZHOU Y Y, et al. Research progress of rockburst prediction and early warning in hard rock underground engineering [J]. Journal of China Coal Society, 2019, 44(Suppl 2): 447–465.
    [8] RUSSENES B F. Analysis of rock spalling for tunnels in steep valley sides [D]. Trondheim: Norwegian Institute of Technology, 1974.
    [9] BARTON N, LIEN R, LUNDE J. Engineering classification of rock masses for the design of tunnel support [J]. Rock Mechanics, 1974, 6(4): 189–236. doi: 10.1007/BF01239496
    [10] MENG F Z, WONG L N Y, ZHOU H. Rock brittleness indices and their applications to different fields of rock engineering: a review [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(1): 221–247. doi: 10.1016/j.jrmge.2020.06.008
    [11] 徐林生, 王兰生. 二郎山公路隧道岩爆发生规律与岩爆预测研究 [J]. 岩土工程学报, 1999, 21(5): 569–572. doi: 10.3321/j.issn:1000-4548.1999.05.009

    XU L S, WANG L S. Study on the laws of rockburst and its forecasting in the tunnel of Erlang Mountain road [J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 569–572. doi: 10.3321/j.issn:1000-4548.1999.05.009
    [12] 冯涛, 谢学斌, 王文星, 等. 岩石脆性及描述岩爆倾向的脆性系数 [J]. 矿冶工程, 2000, 20(4): 18–19. doi: 10.3969/j.issn.0253-6099.2000.04.006

    FENG T, XIE X B, WANG W X, et al. Brittleness of rocks and brittleness indexes for describing rockburst proneness [J]. Mining and Metallurgical Engineering, 2000, 20(4): 18–19. doi: 10.3969/j.issn.0253-6099.2000.04.006
    [13] 张传庆, 卢景景, 陈珺, 等. 岩爆倾向性指标及其相互关系探讨 [J]. 岩土力学, 2017, 38(5): 1397–1404.

    ZHANG C Q, LU J J, CHEN J, et al. Discussion on rock burst proneness indexes and their relation [J]. Rock and Soil Mechanics, 2017, 38(5): 1397–1404.
    [14] 谷明成, 何发亮, 陈成宗. 秦岭隧道岩爆的研究 [J]. 岩石力学与工程学报, 2002, 21(9): 1324–1329. doi: 10.3321/j.issn:1000-6915.2002.09.009

    GU M C, HE F L, CHEN C Z. Study on rockburst in Qingling tunnel [J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(9): 1324–1329. doi: 10.3321/j.issn:1000-6915.2002.09.009
    [15] ZHANG J J, FU B J, LI Z K, et al. Criterion and classification for strain mode rockbursts based on five-factor comprehensive method [C]//Proceedings of the 12th ISRM Congress. Beijing, China: CRC Press, 2011.
    [16] 邱士利, 冯夏庭, 张传庆, 等. 深埋硬岩隧洞岩爆倾向性指标RVI的建立及验证 [J]. 岩石力学与工程学报, 2011, 30(6): 1126–1141.

    QIU S L, FENG X T, ZHANG C Q, et al. Development and validation of rockburst vulnerability index (RVI) in deep hard rock tunnels [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1126–1141.
    [17] KIDYBIŃSKI A. Bursting liability indices of coal [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1981, 18(4): 295–304.
    [18] WILES T D. Correlation between local energy release density and observed bursting conditions at Creighton Mine [R]. Sudbury, Canada: Mines Research, 1998.
    [19] BECK D A, BRADY B H G. Evaluation and application of controlling parameters for seismic events in hard-rock mines [J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(5): 633–642. doi: 10.1016/S1365-1609(02)00061-8
    [20] 苏国韶, 冯夏庭, 江权, 等. 高地应力下地下工程稳定性分析与优化的局部能量释放率新指标研究 [J]. 岩石力学与工程学报, 2006, 25(12): 2453–2460. doi: 10.3321/j.issn:1000-6915.2006.12.010

    SU G S, FENG X T, JIANG Q, et al. Study on new index of local energy release rate for stability analysis and optimal design of underground rockmass engineering with high geostress [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2453–2460. doi: 10.3321/j.issn:1000-6915.2006.12.010
    [21] 邱士利, 冯夏庭, 江权, 等. 深埋隧洞应变型岩爆倾向性评估的新数值指标研究 [J]. 岩石力学与工程学报, 2014, 33(10): 2007−2017.

    QIU S L, FENG X T, JIANG Q, et al. A novel numerical index for estimating strainburst vulnerability in deep tunnels [J] Chinese Journal of Rock Mechanics and Engineering, 2014, 33(10): 2007−2017.
    [22] 徐婕. 煤矿深部砂岩卸荷特性及岩爆预测方法研究 [D]. 武汉: 武汉大学, 2016.

    XU J. Study on characteristics of deep-burred sandstone in the coal mine under loading and unloading conditions and rockburst prediction methods [D]. Wuhan: Wuhan University, 2016.
    [23] 陈卫忠, 吕森鹏, 郭小红, 等. 基于能量原理的卸围压试验与岩爆判据研究 [J]. 岩石力学与工程学报, 2009, 28(8): 1530–1540. doi: 10.3321/j.issn:1000-6915.2009.08.003

    CHEN W Z, LYV S P, GUO X H, et al. Research on unloading confining pressure tests and rockburst criterion based on energy theory [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8): 1530–1540. doi: 10.3321/j.issn:1000-6915.2009.08.003
    [24] 郭建强, 赵青, 王军保, 等. 基于弹性应变能岩爆倾向性评价方法研究 [J]. 岩石力学与工程学报, 2015, 34(9): 1886–1893.

    GUO J Q, ZHAO Q, WANG J B, et al. Rockburst prediction based on elastic strain energy [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9): 1886–1893.
    [25] 宫凤强, 闫景一, 李夕兵. 基于线性储能规律和剩余弹性能指数的岩爆倾向性判据 [J]. 岩石力学与工程学报, 2018, 37(9): 1993–2014.

    GONG F Q, YAN J Y, LI X B. A new criterion of rock burst proneness based on the linear energy storage law and the residual elastic energy index [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 1993–2014.
    [26] 孙飞跃, 范俊奇, 郭佳奇, 等. 基于能量原理的岩爆倾向性判据 [J]. 高压物理学报, 2021, 35(3): 035202. doi: 10.11858/gywlxb.20200650

    SUN F Y, FAN J Q, GUO J Q, et al. Rockburst proneness criterion based on energy principle [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 035202. doi: 10.11858/gywlxb.20200650
    [27] 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则 [J]. 岩石力学与工程学报, 2005, 24(17): 3003–3010. doi: 10.3321/j.issn:1000-6915.2005.17.001

    XIE H P, JU Y, LI L Y. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003–3010. doi: 10.3321/j.issn:1000-6915.2005.17.001
    [28] 伍法权, 伍劼, 祁生文. 关于脆性岩体岩爆成因的理论分析 [J]. 工程地质学报, 2010, 18(5): 589–595. doi: 10.3969/j.issn.1004-9665.2010.05.001

    WU F Q, WU J, QI S W. Theoretical analysis on mechanism of rock burst of brittle rock mass [J]. Journal of Engineering Geology, 2010, 18(5): 589–595. doi: 10.3969/j.issn.1004-9665.2010.05.001
    [29] 蒋邦友. 深部复合地层隧道TBM施工岩爆孕育及控制机理研究 [D]. 徐州: 中国矿业大学, 2017.

    JIANG B Y. Evolution and control mechanism of rockburst induced by TBM excavation in deep mixed ground tunnel [D]. Xuzhou: China University of Mining and Technology, 2017.
    [30] 尚彦军, 张镜剑, 傅冰骏. 应变型岩爆三要素分析及岩爆势表达 [J]. 岩石力学与工程学报, 2013, 32(8): 1520–1527.

    SHANG Y J, ZHANG J J, FU B J. Analyses of three parameters for strain mode rockburst and expression of rockburst potential [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1520–1527.
    [31] 石崇, 褚卫江, 郑文棠. 块体离散元数值模拟技术及工程应用 [M]. 北京: 中国建筑工业出版社, 2016.

    SHI C, CHU W J, ZHENG W T. Block discrete element numerical simulation technology and engineering application [M]. Beijing: China Architecture and Building Press, 2016.
    [32] 杨凡杰, 周辉, 卢景景, 等. 岩爆发生过程的能量判别指标 [J]. 岩石力学与工程学报, 2015, 34(Suppl 1): 2706–2714.

    YANG F J, ZHOU H, LU J J, et al. An energy criterion in process of rockburst [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Suppl 1): 2706–2714.
    [33] 周辉, 杨凡杰, 张传庆, 等. 岩爆和冲击地压数值模拟与评估预测方法 [M]. 北京: 科学出版社, 2015.

    ZHOU H, YANG F J, ZHANG C Q, et al. Numerical simulation, evaluation and prediction of rockburst [M]. Beijing: Science Press, 2015.
    [34] 江权, 樊义林, 冯夏庭, 等. 高应力下硬岩卸荷破裂: 白鹤滩水电站地下厂房玄武岩开裂观测实例分析 [J]. 岩石力学与工程学报, 2017, 36(5): 1076–1087.

    JIANG Q, FAN Y L, FENG X T, et al. Unloading break of hard rock under high geo-stress condition: inner cracking observation for the basalt in the Baihetan’s underground powerhouse [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5): 1076–1087.
    [35] 江权, 冯夏庭, 李邵军, 等. 高应力下大型硬岩地下洞室群稳定性设计优化的裂化-抑制法及其应用 [J]. 岩石力学与工程学报, 2019, 38(6): 1081–1101.

    JIANG Q, FENG X T, LI S J, et al. Cracking-restraint design method for large underground caverns with hard rock under high geostress condition and its practical application [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1081–1101.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  805
  • HTML全文浏览量:  418
  • PDF下载量:  27
出版历程
  • 收稿日期:  2021-08-01
  • 修回日期:  2021-08-22
  • 录用日期:  2021-08-22

目录

    /

    返回文章
    返回