椭圆截面战斗部爆炸驱动破片作用过程的数值模拟

邓宇轩 张先锋 冯可华 刘闯 杜宁 刘均伟 李鹏程

邓宇轩, 张先锋, 冯可华, 刘闯, 杜宁, 刘均伟, 李鹏程. 椭圆截面战斗部爆炸驱动破片作用过程的数值模拟[J]. 高压物理学报, 2022, 36(2): 025104. doi: 10.11858/gywlxb.20210856
引用本文: 邓宇轩, 张先锋, 冯可华, 刘闯, 杜宁, 刘均伟, 李鹏程. 椭圆截面战斗部爆炸驱动破片作用过程的数值模拟[J]. 高压物理学报, 2022, 36(2): 025104. doi: 10.11858/gywlxb.20210856
DENG Yuxuan, ZHANG Xianfeng, FENG Kehua, LIU Chuang, DU Ning, LIU Junwei, LI Pengcheng. Numerical Simulation of Fragmentation Process Driven by Explosion in Elliptical Cross-Section Warhead[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025104. doi: 10.11858/gywlxb.20210856
Citation: DENG Yuxuan, ZHANG Xianfeng, FENG Kehua, LIU Chuang, DU Ning, LIU Junwei, LI Pengcheng. Numerical Simulation of Fragmentation Process Driven by Explosion in Elliptical Cross-Section Warhead[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025104. doi: 10.11858/gywlxb.20210856

椭圆截面战斗部爆炸驱动破片作用过程的数值模拟

doi: 10.11858/gywlxb.20210856
基金项目: 中央高校基本科研业务费专项资金(30919011401)
详细信息
    作者简介:

    邓宇轩(1998-), 男, 硕士研究生, 主要从事高效毁伤技术研究. E-mail:2472263297@qq.com

    通讯作者:

    张先锋(1978-), 男, 博士, 教授, 主要从事高效毁伤与防护技术研究. E-mail:lynx@njust.edu.cn

  • 中图分类号: O383

Numerical Simulation of Fragmentation Process Driven by Explosion in Elliptical Cross-Section Warhead

  • 摘要: 为研究爆轰驱动下椭圆截面自然破片杀伤战斗部壳体的膨胀破裂过程以及壳体破片径向速度分布,建立了椭圆截面战斗部三维模型。通过AUTODYN-3D软件,采用Lagrange算法模拟爆轰驱动下椭圆截面自然破片战斗部壳体的膨胀断裂过程,研究了端面单点中心起爆方式下短长轴断裂时间差与短长轴比的关系,以及不同起爆点、不同短长轴比和不同装填比(即装药与壳体质量之比)对椭圆截面战斗部径向破片速度分布的影响。结果表明:与端面中心单点起爆、端面长轴双点偏心起爆和端面短长轴四点偏心起爆相比,端面短轴双点偏心起爆方式对椭圆截面战斗部壳体破片径向速度的增益效果最好。装填比一定时,短、长轴断裂时间以及短、长轴断裂时间差与短长轴比呈线性关系,战斗部壳体膨胀过程中截面形状的实时短长轴比与加载时间呈线性关系;随着短长轴比的增大,战斗部壳体破片径向速度增益逐渐减小。短长轴比一定,装填比小于1时,破片速度随方位角增大呈正弦趋势上升,且短、长轴方向破片速度差与装填比呈线性关系。

     

  • 图  椭圆截面战斗部截面形状

    Figure  1.  Cross-section shape of elliptical cross-section warhead

    图  战斗部的三维模型

    Figure  2.  Three-dimensional model of warhead

    图  圆柱形刻槽战斗部模型

    Figure  3.  Models of cylindrical grooved warhead

    图  16 µs时刻壳体膨胀断裂状态

    Figure  4.  Expansive fracture state of warhead at 16 µs

    图  数值模拟与试验结果对比

    Figure  5.  Comparison of numerical simulation and experimental results

    图  战斗部中部平面内爆轰波的传播

    Figure  6.  Detonation wave propagation in the middle section of warhead

    图  椭圆截面战斗部壳体膨胀断裂过程

    Figure  7.  Expansion fracture process of elliptical cross-section warhead shell

    图  战斗部中部壳体的破片速度

    Figure  8.  Velocity of shell fragment in the middle section of warhead

    图  典型时刻战斗部的截面轮廓

    Figure  9.  Section shape of warhead at typical time

    图  10  不同初始短长轴比战斗部截面形状随时间变化曲线

    Figure  10.  Cross-sectional shape versus time curves of warheads with different $\,\mu $0

    图  11  战斗部短、长轴方向壳体的断裂时间

    Figure  11.  Fracture time of warhead shell in the direction of minor and major axes

    图  12  不同起爆方式示意图

    Figure  12.  Schematic diagram of different initiation modes

    图  13  起爆方式对破片径向速度分布的影响

    Figure  13.  Influence of initiation mode on radial velocity distribution of fragments

    图  14  $\,\mu $0对破片径向速度分布的影响

    Figure  14.  Influence of $\,\mu $0 on radial velocity distribution of fragments

    图  15  $\,\mu $0对短长轴方向破片速度差值的影响

    Figure  15.  Influence of $\,\mu $0 on the velocity difference of fragments in the major and minor axes

    图  16  $\,\beta $对壳体破片径向速度分布的影响

    Figure  16.  Influence of $\,\beta $ on radial velocity distribution of shell fragments

    图  17  $\,\beta $对短长轴方向破片速度差的影响

    Figure  17.  Influence of $\,\beta $ on the velocity difference of fragments in the minor and major axes

    表  1  战斗部壳体材料参数[14]

    Table  1.   Material parameters of warhead shell[14]

    Material$\,\rho $/(g·cm−3)A/MPaB/MPanCMelting point/K
    D607.8383112800.6720.0271811
    下载: 导出CSV

    表  2  数值模拟中采用的材料模型

    Table  2.   Material models of numerical simulation

    Component$\,\rho $/(g·cm−3)Equation of stateConstitutive equationFailure
    D60 shell7.83LinerJohnson-CookPrincipal strain
    2A12 cover board2.75ShockJohnson-CookPlastic strain
    8701 explosive1.71JWL
    下载: 导出CSV

    表  3  试验与数值模拟结果对比

    Table  3.   Comparison of experimental and numerical simulation results

    Mass range/gn1n2
    [0.10, 0.20)228281
    [0.20, 0.25)126103
    [0.25, 0.30) 30 33
    下载: 导出CSV

    表  4  不同短长轴比椭圆截面战斗部模型参数

    Table  4.   Model parameters of elliptical cross-section warhead with different $\,\mu $0

    Test No.x/mmy/mmThickness of shell/mm$\,\beta $$\,\mu $0
    130.6212.252.350.6330.4
    227.3913.692.440.6330.5
    325.0015.002.500.6330.6
    423.1516.202.540.6330.7
    521.6517.322.560.6330.8
    620.4118.372.570.6330.9
    719.3619.362.570.6331.0
    下载: 导出CSV

    表  5  不同装药与壳体质量比的椭圆截面战斗部模型参数

    Table  5.   Model parameters of elliptical cross-section warhead with different mass ratios of charge to shell

    Test No.x/mmy/mmShell thickness/mm$\,\mu $0$\,\beta $
    125153.660.60.49
    225153.060.60.59
    325152.460.60.75
    425152.160.60.86
    525151.860.61.00
    625151.560.61.20
    下载: 导出CSV
  • [1] 龚柏林, 卢芳云, 李翔宇. D型预制破片战斗部破片飞散过程的数值模拟 [J]. 弹箭与制导学报, 2010, 30(1): 88–90, 94. doi: 10.3969/j.issn.1673-9728.2010.01.027

    GONG B L, LU F Y, LI X Y. Simulation and study on the fragment ejection process of premade D-shape warhead [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2010, 30(1): 88–90, 94. doi: 10.3969/j.issn.1673-9728.2010.01.027
    [2] 李振铎, 李翔宇, 卢芳云, 等. D字形预制破片战斗部破片能量分布特性 [J]. 弹箭与制导学报, 2016, 36(1): 55–58, 62. doi: 10.15892/j.cnki.djzdxb.2016.01.014

    LI Z D, LI X Y, LU F Y, et al. Study on fragment energy distribution characteristics of premade D-shape warhead [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2016, 36(1): 55–58, 62. doi: 10.15892/j.cnki.djzdxb.2016.01.014
    [3] 李翔宇, 李振铎, 梁民族. D型战斗部破片飞散性及威力场快速计算 [J]. 爆炸与冲击, 2019, 39(4): 043301. doi: 10.11883/bzycj-2017-0420

    LI X Y, LI Z D, LIANG M Z. Dispersion properties and rapid calculation of fragment force field of D-shaped fragmentation warhead [J]. Explosion and Shock Waves, 2019, 39(4): 043301. doi: 10.11883/bzycj-2017-0420
    [4] LI Y, WEN Y Q. Simulation on damage effectiveness of hexagonal prism aimable warhead with multi-point synchronous initiations [J]. Journal of Beijing Institute of Technology, 2014, 23(1): 1–7. doi: 10.15918/j.jbit1004-0579.2014.01.008
    [5] 薛再清, 乔良, 王凯, 等. 小锥角椭圆杀伤战斗部破片初速分布规律初探 [C]//第十五届全国战斗部与毁伤技术学术交流会论文集. 北京, 2017: 472−479.

    XUE Z Q, QIAO L, WANG K, et al. A preliminary study on the distribution law of the initial velocity of the fragmentation of the small cone angle elliptical killing warhead [C]//Proceedings of the 15th National Warfare and Damage Technology Academic Exchange Confrence. Beijing, 2017: 472−429.
    [6] 杨祥, 武海军, 皮爱国, 等. 椭圆截面杀伤战斗部破片初速沿周向分布规律 [J]. 北京理工大学学报, 2018, 38(Suppl 2): 178–183. doi: 10.15918/j.tbit1001-0645.2018.s2.040

    YANG X, WU H J, PI A G, et al. Fragment velocity distribution of elliptical cross-section killing warhead along circumference [J]. Transactions of Beijing Institute of Technology, 2018, 38(Suppl 2): 178–183. doi: 10.15918/j.tbit1001-0645.2018.s2.040
    [7] GURNEY R W. Initial velocities of fragments from bombs, shell, grenades [R]. Aberdeen, USA: Ballistic Research Laboratory, 1943.
    [8] 王文杰, 张先锋, 邓佳杰, 等. 椭圆截面弹体侵彻砂浆靶规律分析 [J]. 爆炸与冲击, 2018, 38(1): 164–173. doi: 10.11883/bzycj-2017-0020

    WANG W J, ZHANG X F, DENG J J, et al. Analysis of projectile penetrating into mortar target with elliptical cross-section [J]. Explosion and Shock Waves, 2018, 38(1): 164–173. doi: 10.11883/bzycj-2017-0020
    [9] GARON K D, FAMINU O. Aeroballistic range tests of missile configurations with non-circular cross-sections and aeroprediction comparison results [C]//Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2003: 6−9.
    [10] 冉洪. 椭圆截面飞行器单独体(高)超声速气动性能初步研究 [C]//第一届近代实验空气动力学会议论文集. 银川: 中国空气动力学会, 2007: 418−424.

    RAN H. Initial investigation of (high) supersonic aerodynamic performance of air vehicle body of elliptic cross-section [C]//Proceeding of 1st Contemporary Experimental Aerodynamics Conference. Yinchuan: Chinese Society of Aerodynamics, 2007: 418−424.
    [11] 张先锋, 李向东, 沈培辉, 等. 终点效应学 [M]. 北京: 北京理工大学出版社, 2017: 126−172.

    ZHANG X F, LI X D, SHEN P H, et al. Terminal effects [M]. Beijing: Beijing Institute of Technology Press, 2017: 126−172.
    [12] GRADY D. Fragmentation of rings and shells: the legacy of N. F. Mott [M]. Berlin: Springer, 2006: 243−294.
    [13] JONATHAN P G, GREG F, COLIN H. Numerical simulation of fragmentation using AUTODYN-2D and 3D in explosive ordnance safety assessment [C]//The PARARI International Explosive Ordnance Symposium. Canberra, Astralia, 2003: 2−8.
    [14] 杜宁, 丁力, 卢建东, 等. 不同硬度刻槽壳体爆炸驱动形成破片特性研究 [J]. 弹道学报, 2019, 31(2): 80–86. doi: 10.12115/j.issn.1004-499X(2019)02-014

    DU N, DING L, LU J D, et al. Study on fragments formation of groove shell with different hardness under explosively loading [J]. Journal of Ballistics, 2019, 31(2): 80–86. doi: 10.12115/j.issn.1004-499X(2019)02-014
    [15] 刘明涛, 汤铁钢. 爆炸加载下金属壳体膨胀断裂过程中的关键物理问题 [J]. 爆炸与冲击, 2021, 41(1): 011402. doi: 10.11883/bzycj-2020-0351

    LIU M T, TANG T G. Key physical problems in the expanding fracture of explosively driven metallic shells [J]. Explosion and Shock Waves, 2021, 41(1): 011402. doi: 10.11883/bzycj-2020-0351
    [16] 王力. 柱形壳体偏心起爆时破片飞散特性的研究 [D]. 北京: 北京理工大学, 2017: 2−6.

    WANG L. Research on the dispersion characteristics of fragments from a cylindrical casing under eccentric initiation [D]. Beijing: Beijing Institute of Technology, 2017: 2−6.
    [17] 沈慧铭, 李伟兵, 王晓鸣, 等. 圆柱壳体装药偏心多点起爆下破片速度的分布 [J]. 爆炸与冲击, 2017, 37(6): 1039–1045. doi: 10.11883/1001-1455(2017)06-1039-07

    SHEN H M, LI W B, WANG X M, et al. Velocity distribution of fragments resulted by explosion of a cylindrical shell charge on multi-spots eccentric initiation [J]. Explosion and Shock Waves, 2017, 37(6): 1039–1045. doi: 10.11883/1001-1455(2017)06-1039-07
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  939
  • HTML全文浏览量:  626
  • PDF下载量:  53
出版历程
  • 收稿日期:  2021-08-01
  • 修回日期:  2021-08-19
  • 录用日期:  2021-08-23

目录

    /

    返回文章
    返回