爆炸载荷下舱内泡沫铝夹芯结构的动响应特性

谢悦 侯海量 李典

谢悦, 侯海量, 李典. 爆炸载荷下舱内泡沫铝夹芯结构的动响应特性[J]. 高压物理学报, 2022, 36(2): 024103. doi: 10.11858/gywlxb.20210849
引用本文: 谢悦, 侯海量, 李典. 爆炸载荷下舱内泡沫铝夹芯结构的动响应特性[J]. 高压物理学报, 2022, 36(2): 024103. doi: 10.11858/gywlxb.20210849
XIE Yue, HOU Hailiang, LI Dian. Dynamic Response Characteristics of Aluminum Foam Sandwich Structure under Explosion Load in Cabin[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024103. doi: 10.11858/gywlxb.20210849
Citation: XIE Yue, HOU Hailiang, LI Dian. Dynamic Response Characteristics of Aluminum Foam Sandwich Structure under Explosion Load in Cabin[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024103. doi: 10.11858/gywlxb.20210849

爆炸载荷下舱内泡沫铝夹芯结构的动响应特性

doi: 10.11858/gywlxb.20210849
基金项目: 国家自然科学基金(51979277)
详细信息
    作者简介:

    谢 悦(1998-),女,硕士,主要从事舰船舱内爆炸结构防护研究. E-mail:Etsu0630@163.com

    通讯作者:

    李 典(1990-),男,博士,讲师,主要从事舰船抗爆抗冲击研究. E-mail:lidian916@163.com

  • 中图分类号: O383

Dynamic Response Characteristics of Aluminum Foam Sandwich Structure under Explosion Load in Cabin

  • 摘要: 为探索爆炸载荷下舱内夹芯复合结构的动态响应特性与防护效能,采用小尺度舱室结构模型实验,结合有限元数值分析,开展了不同爆炸距离下舱内双层泡沫铝夹芯结构的动响应特性和变形模式研究。分析了不同爆距下舱内爆炸载荷的作用过程和时空分布特性,讨论了在初始冲击波、初始冲击波叠加各壁面二次反射波和舱内爆炸准静态压力3种载荷下泡沫铝夹芯结构的变形模式。爆炸载荷下舱室壁板承受的载荷依次为初始冲击波、各壁面二次反射波和准静态气压。炸药在靠近舱室一端处起爆时,初始冲击波在近端壁的局部效应明显,在远端壁的作用范围更大,与舱室中心爆炸相比,其爆轰产物波动次数更少。泡沫铝夹芯结构的变形过程可分为泡沫芯层压缩、局部凸起变形和整体挠曲变形3个阶段,对应迎爆面板局部凸起叠加整体挠曲大变形、局部凸起叠加整体挠曲大变形和整体挠曲大变形3种变形模式。

     

  • 图  实验装置及示意图(单位:mm)

    Figure  1.  Experimental setup and schematic diagram (unit: mm)

    图  泡沫铝夹芯结构尺寸示意图(单位:mm)

    Figure  2.  Size of aluminum foam sandwich structure (unit:mm)

    图  泡沫铝准静态压缩应力-应变曲线

    Figure  3.  Stress-strain curves of aluminum foams under quasi-static compression experiments

    图  面板拉伸试件尺寸(单位:mm)

    Figure  4.  Dimension of tensile specimen of panel steel (unit: mm)

    图  面板拉伸应力-应变曲线

    Figure  5.  Stress-strain curves of steels under tensile experiments

    图  装药布置及爆距示意图

    Figure  6.  Schematic diagram of explosive support and detonation distance

    图  爆炸环境示意图

    Figure  7.  Diagram of explosion environment

    夹芯结构迎、背爆面板变形的数值模拟和实验结果

    8.  Numerical simulation and experiment results of deformation of front and rear plates in sandwich structure

    图  350 mm爆距下舱室内冲击动压的变化

    Figure  9.  Variation of impact pressure in cabin under 350 mm detonation distance

    图  10  50 mm爆距下舱室内冲击动压的变化过程

    Figure  10.  Variation of impact pressure in cabin under 50 mm detonation distance

    图  11  典型位置

    Figure  11.  Location of typical points

    图  12  不同爆距下夹芯结构中心点的压力时程曲线

    Figure  12.  Time history curves of pressure at center point of sandwich structure under different detonation distances

    图  13  不同爆距下舱室角隅点的压力时程曲线

    Figure  13.  Time history curves of cabin corner pressure at different detonation distances

    图  14  结构中心点和1/4点的压力时程曲线

    Figure  14.  Pressure time history curves at the center and quarter points of the structure

    图  15  SoD为50 mm时泡沫铝夹芯结构的变形过程

    Figure  15.  Deformation of aluminum foam sandwich structure under 50 mm detonation distance

    图  16  SoD为550 mm时泡沫铝夹芯结构的变形过程

    Figure  16.  Deformation of aluminum foam sandwich structure under 550 mm detonation distance

    图  17  SoD分别为50和550 mm时迎、背爆面板中心点的速度时程曲线

    Figure  17.  Time history curves of center pointvelocity of front and rear plates when theSoD was 50 and 550 mm, respectively

    图  18  舱内爆炸下泡沫铝夹芯结构的3种典型变形模式

    Figure  18.  Three typical deformation modes of aluminum foam sandwich structure under explosion in cabin

    图  19  封闭环境下100、150 mm爆距时背爆面板的变形量对比

    Figure  19.  Comparison of deformation of rear plates under 100 and 150 mm detonation distance in closed environment

    图  20  不同爆炸环境下泡沫铝夹芯结构背爆面板的变形对比

    Figure  20.  Deformation comparison of rear plate of aluminum foam sandwich structure in different explosion environment

    表  1  泡沫铝的主要力学性能参数

    Table  1.   Main mechanical properties of aluminum foam

    Density/(g·cm−3)Elastic
    modulus/MPa
    Plateau
    stress/MPa
    0.37704.7
    0.541459.2
    0.7525019.0
    下载: 导出CSV

    表  2  钢板的主要力学性能参数

    Table  2.   Main mechanical parameters of steel

    Density/(g·cm−3)Elastic modulus/GPaYield strength/MPaUltimate tensile strength/MPa
    7.8194300390
    下载: 导出CSV

    表  3  PLASTIC_KINEMATIC本构模型参数

    Table  3.   Constitutive model parameters of PLASTIC_KINEMATIC

    Density/(g·cm−3)E/GPa$\nu$$\sigma $0/MPaEh/MPaD/s−1$ \eta $$\varepsilon $
    7.81940.330025040.550.22
    下载: 导出CSV

    表  4  TNT炸药的状态方程参数

    Table  4.   Equation of state parameters of TNT

    A/GPaB/GPaR1R2$\omega $E01/(kJ·m−3)
    371.23.2314.150.950.37×106
    下载: 导出CSV

    表  5  研究工况

    Table  5.   Working conditions

    Condition No.Explosive environmentSoD/mmMethodCore thickness/mm
    1Confined50Experiment/FEM20
    2Confined100Experiment/FEM20
    3Confined150Experiment/FEM20
    4Confined350FEM20
    5Confined550FEM20
    6Vented50FEM20
    7Vented550FEM20
    8Free air burst50FEM20
    9Free air burst550FEM20
    下载: 导出CSV

    表  6  实验与数值模拟的背爆面板最大挠度对比

    Table  6.   Experimental and numerical comparison of the maximum deflection of the rear plate

    SoD/mm Maximum deflection/mm Relative error/%
    ExperimentSimulation
    50403122.5
    10025244.0
    15026247.7
    下载: 导出CSV
  • [1] LANGDON G S, YUEN S C K, NURICK G N. Experimental and numerical studies on the response of quadrangular stiffened plates. Part Ⅱ: localised blast loading [J]. International Journal of Impact Engineering, 2005, 31(1): 85–111. doi: 10.1016/j.ijimpeng.2003.09.050
    [2] YUEN S C K, NURICK G N. Experimental and numerical studies on the response of quadrangular stiffened plates. Part Ⅰ: subjected to uniform blast load [J]. International Journal of Impact Engineering, 2005, 31(1): 55–83. doi: 10.1016/j.ijimpeng.2003.09.048
    [3] 侯海量, 朱锡, 古美邦. 爆炸载荷作用下加筋板的失效模式分析及结构优化设计 [J]. 爆炸与冲击, 2007, 27(1): 26–33. doi: 10.11883/1001-1455(2007)01-0026-08

    HOU H L, ZHU X, GU M B. Study on failure mode of stiffened plate and optimized design of structure subjected to blast load [J]. Explosion and Shock Waves, 2007, 27(1): 26–33. doi: 10.11883/1001-1455(2007)01-0026-08
    [4] 陈鹏宇. 舱内爆炸载荷及夹芯复合舱壁结构动响应特性研究 [D]. 武汉: 海军工程大学, 2019: 85−90.

    CHEN P Y. Study on characteristics of confined explosion load and dynamic response of sandwich composite bulkhead structure [D]. Wuhan: Naval University of Engineering, 2019: 85−90.
    [5] 焦立启, 侯海量, 陈鹏宇, 等. 爆炸冲击载荷下固支单向加筋板的动响应及破损特性研究 [J]. 兵工学报, 2019, 40(3): 592–600. doi: 10.3969/j.issn.1000-1093.2019.03.019

    JIAO L Q, HOU H L, CHEN P Y, et al. Research on dynamic response and damage characteristics of fixed supported one-way stiffened plates under blast loading [J]. Acta Armamentarii, 2019, 40(3): 592–600. doi: 10.3969/j.issn.1000-1093.2019.03.019
    [6] 肖锋, 谌勇, 章振华, 等. 三明治结构爆炸冲击动力学研究综述 [J]. 噪声与振动控制, 2012, 32(6): 1–7.

    XIAO F, CHEN Y, ZHANG Z H, et al. Review of research of blast impact of sandwich structures [J]. Noise and Vibration Control, 2012, 32(6): 1–7.
    [7] 邓旭辉, 李亚斌. 双层泡沫铝夹芯板抗冲击性能数值研究 [J]. 铁道科学与工程学报, 2019, 16(10): 2603–2611. doi: 10.19713/j.cnki.43-1423/u.2019.10.029

    DENG X H, LI Y B. Numerical study on impact resistance of double-layer foam aluminum sandwich panels [J]. Journal of Railway Science and Engineering, 2019, 16(10): 2603–2611. doi: 10.19713/j.cnki.43-1423/u.2019.10.029
    [8] 王涛, 余文力, 秦庆华, 等. 爆炸载荷下泡沫铝夹芯板变形与破坏模式的实验研究 [J]. 兵工学报, 2016, 37(8): 1456–1463. doi: 10.3969/j.issn.1000-1093.2016.08.017

    WANG T, YU W L, QIN Q H, et al. Experimental investigation into deformation and damage patterns of sandwich plates with aluminum foam core subjected to blast loading [J]. Acta Armamentarii, 2016, 37(8): 1456–1463. doi: 10.3969/j.issn.1000-1093.2016.08.017
    [9] 韩守红, 吕振华. 铝泡沫夹层结构抗爆炸性能仿真分析及优化 [J]. 兵工学报, 2010, 31(11): 1468–1474.

    HAN S H, LÜ Z H. Numerical simulation of blast-resistant performance of aluminum foam sandwich structures and optimization [J]. Acta Armamentarii, 2010, 31(11): 1468–1474.
    [10] 亓昌, 杨丽君, 杨姝. 梯度铝泡沫夹层结构抗爆性能仿真与优化 [J]. 振动与冲击, 2013, 32(13): 70–75. doi: 10.3969/j.issn.1000-3835.2013.13.014

    QI C, YANG L J, YANG S. Simulation and optimization for blast-resistant performances of a graded aluminum foam sandwich structure [J]. Journal of Vibration and Shock, 2013, 32(13): 70–75. doi: 10.3969/j.issn.1000-3835.2013.13.014
    [11] LI S Q, LI X, WANG Z H, et al. Finite element analysis of sandwich panels with stepwise graded aluminum honeycomb cores under blast loading [J]. Composites Part A: Applied Science and Manufacturing, 2016, 80: 1–12. doi: 10.1016/j.compositesa.2015.09.025
    [12] 李春鹏, 张攀, 刘均, 等. 空爆载荷下功能梯度泡沫铝夹层板动响应数值仿真 [J]. 中国舰船研究, 2018, 13(3): 77–84. doi: 10.19693/j.issn.1673-3185.01172

    LI C P, ZHANG P, LIU J, et al. Numerical simulation of dynamic response of functionally graded aluminum foam sandwich panels under air blast loading [J]. Chinese Journal of Ship Research, 2018, 13(3): 77–84. doi: 10.19693/j.issn.1673-3185.01172
    [13] Unified Facilities Criteria. Structures to resist the effects of accidental explosions: UFC 3−340−02 [S]. Washington D C, USA: Department of the Army, the Navy and the Air Force, 2008.
    [14] 侯海量, 朱锡, 李伟, 等. 舱内爆炸冲击载荷特性实验研究 [J]. 船舶力学, 2010, 14(8): 901–907. doi: 10.3969/j.issn.1007-7294.2010.08.011

    HOU H L, ZHU X, LI W, et al. Experimental studies on characteristics of blast loading when exploded inside ship cabin [J]. Journal of Ship Mechanics, 2010, 14(8): 901–907. doi: 10.3969/j.issn.1007-7294.2010.08.011
    [15] 侯海量, 朱锡, 梅志远. 舱内爆炸载荷及舱室板架结构的失效模式分析 [J]. 爆炸与冲击, 2007, 27(2): 151–158. doi: 10.11883/1001-1455(2007)02-0151-08

    HOU H L, ZHU X, MEI Z Y. Study on the blast load and failure mode of ship structure subject to internal explosion [J]. Explosion and Shock Waves, 2007, 27(2): 151–158. doi: 10.11883/1001-1455(2007)02-0151-08
    [16] ZHANG J, ZHAO G P, LU T J. Dynamic responses of sandwich beams with gradient-density aluminum foam cores [J]. International Journal of Protective Structures, 2011, 2(4): 439–451. doi: 10.1260/2041-4196.2.4.439
    [17] SYMONDS P S, YU T X. Counterintuitive behavior in a problem of elastic-plastic beam dynamics [J]. Journal of Applied Mechanics, 1985, 52(3): 517–522. doi: 10.1115/1.3169093
    [18] SHANLEY F R. Inelastic column theory [J]. Journal of the Aeronautical Sciences, 1947, 14(5): 261–268. doi: 10.2514/8.1346
    [19] YU T X, XU Y. The anomalous response of an elastic-plastic structural model to impulsive loading [J]. Journal of Applied Mechanics, 1989, 56(4): 868–873. doi: 10.1115/1.3176184
  • 加载中
图(21) / 表(6)
计量
  • 文章访问数:  769
  • HTML全文浏览量:  465
  • PDF下载量:  40
出版历程
  • 收稿日期:  2021-07-20
  • 修回日期:  2021-08-11
  • 录用日期:  2021-08-17

目录

    /

    返回文章
    返回