Dynamic Response Characteristics of Aluminum Foam Sandwich Structure under Explosion Load in Cabin
-
摘要: 为探索爆炸载荷下舱内夹芯复合结构的动态响应特性与防护效能,采用小尺度舱室结构模型实验,结合有限元数值分析,开展了不同爆炸距离下舱内双层泡沫铝夹芯结构的动响应特性和变形模式研究。分析了不同爆距下舱内爆炸载荷的作用过程和时空分布特性,讨论了在初始冲击波、初始冲击波叠加各壁面二次反射波和舱内爆炸准静态压力3种载荷下泡沫铝夹芯结构的变形模式。爆炸载荷下舱室壁板承受的载荷依次为初始冲击波、各壁面二次反射波和准静态气压。炸药在靠近舱室一端处起爆时,初始冲击波在近端壁的局部效应明显,在远端壁的作用范围更大,与舱室中心爆炸相比,其爆轰产物波动次数更少。泡沫铝夹芯结构的变形过程可分为泡沫芯层压缩、局部凸起变形和整体挠曲变形3个阶段,对应迎爆面板局部凸起叠加整体挠曲大变形、局部凸起叠加整体挠曲大变形和整体挠曲大变形3种变形模式。Abstract: To study the dynamic response characteristics and protective effectiveness of sandwich composite structure subjected to internal explosion load in a cabin, small scale structure model experiments and finite element numerical simulations were performed, and the propagation and distribution characteristics of the explosion load in the cabin with different blasting distances were analyzed. The dynamic response and deformation mode of the aluminum foam sandwich structure under the initial shock wave, the superposition of reflected shock waves and the quasi-static pressure of the internal explosion were discussed. The experimental and numerical results showed that when the explosive was detonated near one end of the cabin, the localized deformation of the specimen caused by the initial shock wave is significant, while the deformation area of the specimen on the far wall is larger and smoother. Compared with the load conditions of explosions in the center of the cabin, the fluctuation of the shock wave are gentler. In addition, the deformation process of aluminum foam sandwich structure can be divided into three stages: foam core compression, local bulge deformation and overall deflection. The corresponding deformation modes include the facing blast panel with local rising on integral deformation, double panels with local rising on integral and large deformation of integral flexure.
-
Key words:
- mechanics of explosion /
- explosion in cabin /
- sandwich structure /
- aluminum foam /
- dynamic response /
- deformation mode
-
表 1 泡沫铝的主要力学性能参数
Table 1. Main mechanical properties of aluminum foam
Density/(g·cm−3) Elastic
modulus/MPaPlateau
stress/MPa0.37 70 4.7 0.54 145 9.2 0.75 250 19.0 表 2 钢板的主要力学性能参数
Table 2. Main mechanical parameters of steel
Density/(g·cm−3) Elastic modulus/GPa Yield strength/MPa Ultimate tensile strength/MPa 7.8 194 300 390 表 3 PLASTIC_KINEMATIC本构模型参数
Table 3. Constitutive model parameters of PLASTIC_KINEMATIC
Density/(g·cm−3) E/GPa $\nu$ $\sigma $0/MPa Eh/MPa D/s−1 $ \eta $ $\varepsilon $ 7.8 194 0.3 300 250 40.5 5 0.22 表 4 TNT炸药的状态方程参数
Table 4. Equation of state parameters of TNT
A/GPa B/GPa R1 R2 $\omega $ E01/(kJ·m−3) 371.2 3.231 4.15 0.95 0.3 7×106 表 5 研究工况
Table 5. Working conditions
Condition No. Explosive environment SoD/mm Method Core thickness/mm 1 Confined 50 Experiment/FEM 20 2 Confined 100 Experiment/FEM 20 3 Confined 150 Experiment/FEM 20 4 Confined 350 FEM 20 5 Confined 550 FEM 20 6 Vented 50 FEM 20 7 Vented 550 FEM 20 8 Free air burst 50 FEM 20 9 Free air burst 550 FEM 20 表 6 实验与数值模拟的背爆面板最大挠度对比
Table 6. Experimental and numerical comparison of the maximum deflection of the rear plate
SoD/mm Maximum deflection/mm Relative error/% Experiment Simulation 50 40 31 22.5 100 25 24 4.0 150 26 24 7.7 -
[1] LANGDON G S, YUEN S C K, NURICK G N. Experimental and numerical studies on the response of quadrangular stiffened plates. Part Ⅱ: localised blast loading [J]. International Journal of Impact Engineering, 2005, 31(1): 85–111. doi: 10.1016/j.ijimpeng.2003.09.050 [2] YUEN S C K, NURICK G N. Experimental and numerical studies on the response of quadrangular stiffened plates. Part Ⅰ: subjected to uniform blast load [J]. International Journal of Impact Engineering, 2005, 31(1): 55–83. doi: 10.1016/j.ijimpeng.2003.09.048 [3] 侯海量, 朱锡, 古美邦. 爆炸载荷作用下加筋板的失效模式分析及结构优化设计 [J]. 爆炸与冲击, 2007, 27(1): 26–33. doi: 10.11883/1001-1455(2007)01-0026-08HOU H L, ZHU X, GU M B. Study on failure mode of stiffened plate and optimized design of structure subjected to blast load [J]. Explosion and Shock Waves, 2007, 27(1): 26–33. doi: 10.11883/1001-1455(2007)01-0026-08 [4] 陈鹏宇. 舱内爆炸载荷及夹芯复合舱壁结构动响应特性研究 [D]. 武汉: 海军工程大学, 2019: 85−90.CHEN P Y. Study on characteristics of confined explosion load and dynamic response of sandwich composite bulkhead structure [D]. Wuhan: Naval University of Engineering, 2019: 85−90. [5] 焦立启, 侯海量, 陈鹏宇, 等. 爆炸冲击载荷下固支单向加筋板的动响应及破损特性研究 [J]. 兵工学报, 2019, 40(3): 592–600. doi: 10.3969/j.issn.1000-1093.2019.03.019JIAO L Q, HOU H L, CHEN P Y, et al. Research on dynamic response and damage characteristics of fixed supported one-way stiffened plates under blast loading [J]. Acta Armamentarii, 2019, 40(3): 592–600. doi: 10.3969/j.issn.1000-1093.2019.03.019 [6] 肖锋, 谌勇, 章振华, 等. 三明治结构爆炸冲击动力学研究综述 [J]. 噪声与振动控制, 2012, 32(6): 1–7.XIAO F, CHEN Y, ZHANG Z H, et al. Review of research of blast impact of sandwich structures [J]. Noise and Vibration Control, 2012, 32(6): 1–7. [7] 邓旭辉, 李亚斌. 双层泡沫铝夹芯板抗冲击性能数值研究 [J]. 铁道科学与工程学报, 2019, 16(10): 2603–2611. doi: 10.19713/j.cnki.43-1423/u.2019.10.029DENG X H, LI Y B. Numerical study on impact resistance of double-layer foam aluminum sandwich panels [J]. Journal of Railway Science and Engineering, 2019, 16(10): 2603–2611. doi: 10.19713/j.cnki.43-1423/u.2019.10.029 [8] 王涛, 余文力, 秦庆华, 等. 爆炸载荷下泡沫铝夹芯板变形与破坏模式的实验研究 [J]. 兵工学报, 2016, 37(8): 1456–1463. doi: 10.3969/j.issn.1000-1093.2016.08.017WANG T, YU W L, QIN Q H, et al. Experimental investigation into deformation and damage patterns of sandwich plates with aluminum foam core subjected to blast loading [J]. Acta Armamentarii, 2016, 37(8): 1456–1463. doi: 10.3969/j.issn.1000-1093.2016.08.017 [9] 韩守红, 吕振华. 铝泡沫夹层结构抗爆炸性能仿真分析及优化 [J]. 兵工学报, 2010, 31(11): 1468–1474.HAN S H, LÜ Z H. Numerical simulation of blast-resistant performance of aluminum foam sandwich structures and optimization [J]. Acta Armamentarii, 2010, 31(11): 1468–1474. [10] 亓昌, 杨丽君, 杨姝. 梯度铝泡沫夹层结构抗爆性能仿真与优化 [J]. 振动与冲击, 2013, 32(13): 70–75. doi: 10.3969/j.issn.1000-3835.2013.13.014QI C, YANG L J, YANG S. Simulation and optimization for blast-resistant performances of a graded aluminum foam sandwich structure [J]. Journal of Vibration and Shock, 2013, 32(13): 70–75. doi: 10.3969/j.issn.1000-3835.2013.13.014 [11] LI S Q, LI X, WANG Z H, et al. Finite element analysis of sandwich panels with stepwise graded aluminum honeycomb cores under blast loading [J]. Composites Part A: Applied Science and Manufacturing, 2016, 80: 1–12. doi: 10.1016/j.compositesa.2015.09.025 [12] 李春鹏, 张攀, 刘均, 等. 空爆载荷下功能梯度泡沫铝夹层板动响应数值仿真 [J]. 中国舰船研究, 2018, 13(3): 77–84. doi: 10.19693/j.issn.1673-3185.01172LI C P, ZHANG P, LIU J, et al. Numerical simulation of dynamic response of functionally graded aluminum foam sandwich panels under air blast loading [J]. Chinese Journal of Ship Research, 2018, 13(3): 77–84. doi: 10.19693/j.issn.1673-3185.01172 [13] Unified Facilities Criteria. Structures to resist the effects of accidental explosions: UFC 3−340−02 [S]. Washington D C, USA: Department of the Army, the Navy and the Air Force, 2008. [14] 侯海量, 朱锡, 李伟, 等. 舱内爆炸冲击载荷特性实验研究 [J]. 船舶力学, 2010, 14(8): 901–907. doi: 10.3969/j.issn.1007-7294.2010.08.011HOU H L, ZHU X, LI W, et al. Experimental studies on characteristics of blast loading when exploded inside ship cabin [J]. Journal of Ship Mechanics, 2010, 14(8): 901–907. doi: 10.3969/j.issn.1007-7294.2010.08.011 [15] 侯海量, 朱锡, 梅志远. 舱内爆炸载荷及舱室板架结构的失效模式分析 [J]. 爆炸与冲击, 2007, 27(2): 151–158. doi: 10.11883/1001-1455(2007)02-0151-08HOU H L, ZHU X, MEI Z Y. Study on the blast load and failure mode of ship structure subject to internal explosion [J]. Explosion and Shock Waves, 2007, 27(2): 151–158. doi: 10.11883/1001-1455(2007)02-0151-08 [16] ZHANG J, ZHAO G P, LU T J. Dynamic responses of sandwich beams with gradient-density aluminum foam cores [J]. International Journal of Protective Structures, 2011, 2(4): 439–451. doi: 10.1260/2041-4196.2.4.439 [17] SYMONDS P S, YU T X. Counterintuitive behavior in a problem of elastic-plastic beam dynamics [J]. Journal of Applied Mechanics, 1985, 52(3): 517–522. doi: 10.1115/1.3169093 [18] SHANLEY F R. Inelastic column theory [J]. Journal of the Aeronautical Sciences, 1947, 14(5): 261–268. doi: 10.2514/8.1346 [19] YU T X, XU Y. The anomalous response of an elastic-plastic structural model to impulsive loading [J]. Journal of Applied Mechanics, 1989, 56(4): 868–873. doi: 10.1115/1.3176184