棱柱形径向剖分式超高压模具应力分析与实验研究

吴楠楠 赵亮 李明哲 陈晓磊

吴楠楠, 赵亮, 李明哲, 陈晓磊. 棱柱形径向剖分式超高压模具应力分析与实验研究[J]. 高压物理学报, 2022, 36(2): 023301. doi: 10.11858/gywlxb.20210848
引用本文: 吴楠楠, 赵亮, 李明哲, 陈晓磊. 棱柱形径向剖分式超高压模具应力分析与实验研究[J]. 高压物理学报, 2022, 36(2): 023301. doi: 10.11858/gywlxb.20210848
WU Nannan, ZHAO Liang, LI Mingzhe, CHEN Xiaolei. Stress Analysis and Experiment on a Radial Prism Cavity Split-Type Ultra-High Pressure Die[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 023301. doi: 10.11858/gywlxb.20210848
Citation: WU Nannan, ZHAO Liang, LI Mingzhe, CHEN Xiaolei. Stress Analysis and Experiment on a Radial Prism Cavity Split-Type Ultra-High Pressure Die[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 023301. doi: 10.11858/gywlxb.20210848

棱柱形径向剖分式超高压模具应力分析与实验研究

doi: 10.11858/gywlxb.20210848
基金项目: 江苏省“双创计划”项目;江苏省先进制造技术重点实验室开放基金(HGAMTL-1801)
详细信息
    作者简介:

    吴楠楠(1994-),女,硕士,助理工程师,主要从事动力工程研究.E-mail:angeliawnn@163.com

    通讯作者:

    赵 亮(1989-),男,博士,讲师,主要从事超高压模具设计研究.E-mail:minghaibu09@163.com

  • 中图分类号: O521.3; TG305

Stress Analysis and Experiment on a Radial Prism Cavity Split-Type Ultra-High Pressure Die

  • 摘要: 为了获得更高的承压能力和更大的样品腔容积,在传统年轮式超高压模具的基础上,提出了一种新型棱柱形腔体剖分式超高压模具。其特点在于内部的硬质合金压缸是离散组合式的,且腔体内部的面为平面,可有效减小周向拉应力。压缸剖分块在预紧力的作用下相互挤压,提供了大质量支撑和侧向支撑效果。对剖分成6块的棱柱形腔体剖分式压缸的剖分角度进行了研究,仿真结果表明,剖分角度越大,压缸受力越小。棱柱形腔体剖分式压缸在径向、周向和轴向均承受压应力,其应力条件接近于静水压力状态,可有效提高装置的使用寿命。对压缸的应力分布情况进行进一步分析,发现棱柱形径向剖分式压缸在各方面的表现均最优。经实验验证,相较于年轮式压缸,剖分式压缸具有更高的极限承压能力,并且棱柱形径向剖分式压缸的承压能力大于切向剖分式压缸。

     

  • 图  年轮式超高压装置示意图和超高压模具新型剖分方式

    Figure  1.  Schematic diagram of belt-type apparatus and the cylinder split way

    图  超高压模具尺寸(单位:mm)

    Figure  2.  Dimensions of the ultra-high pressure dies (unit: mm)

    图  压缸应力与剖分角度的关系

    Figure  3.  Relationship between cylinder stress and dividing angle

    图  3种压缸的等效应力分布

    Figure  4.  Equivalent stress distribution of three types of cylinders

    图  3种压缸的剪应力分布

    Figure  5.  Shear stress distribution of three types of cylinders

    图  3种压缸的轴向应力分布

    Figure  6.  Axial stress distribution of three types of cylinders

    图  3种压缸在3个方向上的平均法向应力

    Figure  7.  Average normal stress of three types of cylinders in three directions

    图  支撑环的等效应力和最大剪应力

    Figure  8.  Equivalent and maximum shear stresses of the supporting rings

    图  装配后的高压模具以及3种压缸破坏前后的图像

    Figure  9.  High pressure die assembly and three types of cylinders before and after breakup

  • [1] ITO E, KATSURA T, YAMAZAKI D, et al. A new 6-axis apparatus to squeeze the Kawai-cell of sintered diamond cubes [J]. Physics of the Earth & Planetary Interiors, 2009, 174(1): 264–269.
    [2] HAN Q G, LI M Z, JIA X P, et al. Modeling of effective design of high pressure anvils used for large scale commercial production of gem quality large single crystal diamond [J]. Diamond & Related Materials, 2011, 20(7): 969–973.
    [3] YAMAZAKI D, ITO E. High pressure generation in the Kawai-type multianvil apparatus equipped with sintered diamond anvils [J]. High Pressure Research, 2020, 30(2): 78–84.
    [4] IRIFUNE T, KUNIMOTO T, SHINMEI T, et al. High pressure generation in Kawai-type multianvil apparatus using nano-polycrystalline diamond anvils [J]. Comptes Rendus, 2019, 351(2/3): 260–268.
    [5] YANG Y F, LI M Z, WANG B L. Study on stress distribution of tangent split high pressure apparatus and its pressure bearing capacity [J]. Diamond & Related Materials, 2015, 58: 180–184.
    [6] 王伯龙, 李明哲, 刘志卫, 等. 新型切向分块式两面顶超高压模具 [J]. 高压物理学报, 2019, 33(1): 013102.

    WANG B L, LI M Z, LIU Z W, et al. A novel tangential split-belt ultrahigh pressure apparatus [J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 013102.
    [7] 姚裕成. 人造金刚石和超高压高温技术 [M]. 北京: 化学工业出版社, 1996: 35−36.

    YAO Y C. Artificial diamond and ultra-high pressure and high temperature technology [M]. Beijing: Chemical Industry Press, 1996: 35−36.
    [8] ZHU B J, QU X H, TAO Y, et al. Optimization of tungsten cemented carbide injection molding process parameters [J]. Rare Metal Materials & Engineering, 2002, 31(3): 232–235.
    [9] AARON D D, WALTER J M, CHARLES E W. Machine design: theory and practice [M]. New York: Macmillan, 1975: 12−15.
    [10] GETTING I C, CHEN G, BROWN J A. The strength and rheology of commercial tungsten carbide cerments used in high-pressure apparatus, pageoph topical volumes [J]. Pure & Applied Geophysics, 1993, 141(2/3/4): 545–577.
    [11] WANG B L, LI M Z, YANG Y F, et al. Numerical simulation of multilayer stagger-split die and experiment on the bearing capacity [J]. High Pressure Research, 2015, 35(4): 388–395. doi: 10.1080/08957959.2015.1073273
    [12] YANG Y F, LI M Z, LIU Z W, et al. Numerical simulation and experiment on split tungsten carbide cylinder of high pressure apparatus [J]. Review of Scientific Instruments, 2015, 86(12): 125113. doi: 10.1063/1.4939033
    [13] VRBKA J, KNESL Z. Proceedings of high pressure geoscience and material synthesis [M]. Berlin: Akademie-Verlag, 1988: 234.
    [14] ZHAO L, LI M Z, WANG L Y, et al. Stress distribution and pressure-bearing capacity of a high-pressure split-cylinder die with prism cavity [J]. Review of Scientific Instruments, 2018, 89(3): 035106. doi: 10.1063/1.5026407
    [15] KLUNSNER T, WURSTER S, SUPANCIC P, et al. Effect of specimen size on the tensile strength of WC-Co hard metal [J]. Acta Materialia, 2011, 59(10): 4244–4252. doi: 10.1016/j.actamat.2011.03.049
  • 加载中
图(9)
计量
  • 文章访问数:  832
  • HTML全文浏览量:  348
  • PDF下载量:  26
出版历程
  • 收稿日期:  2021-07-19
  • 修回日期:  2021-07-26

目录

    /

    返回文章
    返回