Size-Dependent Structural Phase Transition Behaviors of CaF2 Nanocrystals
doi: 10.11858/gywlxb.20210842
-
摘要: 利用原位高压同步辐射X射线衍射方法,对尺寸为11 nm的CaF2纳米晶粒进行高压结构相变和压缩特性研究。当压力为12 GPa时,观察到由萤石结构向 α-PbCl2结构转变的一次相变,该相变压力点远高于体材料,但略低于粒径更小的 CaF2 纳米晶体。相比体材料,纳米尺寸的CaF2样品的体弹模量更大,说明其更难被压缩。当压力释放至常压时,11 nm的CaF2纳米晶粒的α-PbCl2型亚稳相结构被保留下来,相变不可逆。分析了影响11 nm CaF2纳米晶粒独特高压行为的原因,判定尺寸效应为主要因素,该尺寸下较高的表面能导致结构稳定性增强和体积模量增加。Abstract: CaF2 nanocrystals with a size of 11 nm have been investigated using X-ray diffraction technique under high pressure. A phase transition from the fluorite structure to the α-PbCl2-type structure has been observed at 12 GPa, which is much higher than the value observed in the bulk CaF2 and slightly lower than the one in smaller-sized CaF2 nanocrystals. The compressibility of the CaF2 nanocrystals is discussed, an obviously higher incompressibility than the bulk CaF2 is observed. The α-PbCl2-type metastable phase is retained when the pressure is released to ambient conditions. The unique high-pressure behaviors of the 11 nm-sized CaF2 nanocrystals are attributed to defects and grain size effect. The grain size effect is considered to be the main factor influencing the high-pressure behaviors of the CaF2 nanocrystals. When the size of the CaF2 nanocrystals is as small as 11 nm, the higher surface energy leads to the enhancement of the structural stability and the increase of the bulk modulus.
-
Key words:
- high pressure /
- CaF2 nanocrystals /
- phase transition /
- X-ray diffraction /
- size effect
-
Table 1. Transition pressure (
${p}{_{\rm T}}$ ), and EOS parameters (B0 and B0 ′) of the fluorite-type and the α-PbCl2-type CaF2 -
[1] WANG G F, PENG Q, LI Y D. Upconversion luminescence of monodisperse CaF2: Yb3+/Er3+ nanocrystals [J]. Journal of the American Chemical Society, 2009, 131(40): 14200–14201. doi: 10.1021/ja906732y [2] ZHANG C M, LI C X, PENG C, et al. Facile and controllable synthesis of monodisperse CaF2 and CaF2: Ce3+/Tb3+ hollow spheres as efficient luminescent materials and smart drug carriers [J]. Chemistry—A European Journal, 2010, 16(19): 5672–5680. doi: 10.1002/chem.200903137 [3] ALHARBI N D. Size controlled CaF2 nanocubes and their dosimetric properties using photoluminescence technique [J]. Journal of Nanomaterials, 2015: 136957. [4] XIAO G J, WANG K, ZHU L, et al. Pressure-induced reversible phase transformation in nanostructured Bi2Te3 with reduced transition pressure [J]. The Journal of Physical Chemistry C, 2015, 119(7): 3843–3848. doi: 10.1021/jp512565b [5] GUPTA S K, ZUNIGA J P, POKHREL M, et al. High pressure induced local ordering and tunable luminescence of La2Hf2O7: Eu3+ nanoparticles [J]. New Journal of Chemistry, 2020, 44(14): 5463–5472. doi: 10.1039/D0NJ00585A [6] ZHAO R, WANG P, YAO B B, et al. Co-effect on zinc blende-rocksalt phase transition in CdS nanocrystals [J]. RSC Advances, 2015, 5(23): 17582–17587. doi: 10.1039/C4RA14798G [7] ZHANG J, ZHU H Y, WU X X, et al. Plasma-assisted synthesis and pressure-induced structural transition of single-crystalline SnSe nanosheets [J]. Nanoscale, 2015, 7(24): 10807–10816. doi: 10.1039/C5NR02131F [8] MENG L Y, LANE J M D, BACA L, et al. Shape dependence of pressure-induced phase transition in CdS semiconductor nanocrystals [J]. Journal of the American Chemical Society, 2020, 142(14): 6505–6510. doi: 10.1021/jacs.0c01906 [9] SRIVASTAVA A, TYAGI N, SHARMA U S, et al. Pressure induced phase transformation and electronic properties of AlAs [J]. Materials Chemistry and Physics, 2011, 125(1/2): 66–71. [10] TOLBERT S H, ALIVISATOS A P. Size dependence of a first order solid-solid phase transition: the wurtzite to rock salt transformation in CdSe nanocrystals [J]. Science, 1994, 265(5170): 373–376. doi: 10.1126/science.265.5170.373 [11] MARTÍN-RODRÍGUEZ R, GONZÁLEZ J, VALIENTE R, et al. Reversibility of the zinc-blende to rock-salt phase transition in cadmium sulfide nanocrystals [J]. Journal of Applied Physics, 2012, 111(6): 063516. doi: 10.1063/1.3697562 [12] BUSHIRI M J, VINOD R, SEGURA A, et al. Pressure-induced phase transition in hydrothermally grown ZnO nanoflowers investigated by Raman and photoluminescence spectroscopy [J]. Journal of Physics: Condensed Matter, 2015, 27(38): 385401. doi: 10.1088/0953-8984/27/38/385401 [13] WANG Z W, GUO Q X. Size-dependent structural stability and tuning mechanism: a case of zinc sulfide [J]. The Journal of Physical Chemistry C, 2009, 113(11): 4286–4295. doi: 10.1021/jp808244a [14] LV H, YAO M G, LI Q J, et al. Effect of grain size on pressure-induced structural transition in Mn3O4 [J]. The Journal of Physical Chemistry C, 2012, 116(3): 2165–2171. doi: 10.1021/jp2067028 [15] WANG L, YANG W G, DING Y, et al. Size-dependent amorphization of nanoscale Y2O3 at high pressure [J]. Physical Review Letters, 2010, 105(9): 095701. doi: 10.1103/PhysRevLett.105.095701 [16] SWAMY V, KUZNETSOV A, DUBROVINSKY L S, et al. Size-dependent pressure-induced amorphization in Nanoscale TiO2 [J]. Physical Review Letters, 2006, 96(13): 135702. doi: 10.1103/PhysRevLett.96.135702 [17] LI Q J, LIU B B, WANG L, et al. Pressure-induced amorphization and polyamorphism in one-dimensional single-crystal TiO2 nanomaterials [J]. The Journal of Physical Chemistry Letters, 2010, 1(1): 309–314. doi: 10.1021/jz9001828 [18] QUAN Z W, WANG Y X, BAE I T, et al. Reversal of hall-petch effect in structural stability of PbTe nanocrystals and associated variation of phase transformation [J]. Nano Letters, 2011, 11(12): 5531–5536. doi: 10.1021/nl203409s [19] WANG J S, CUI Q L, HU T J, et al. Pressure-induced amorphization in BaF2 nanoparticles [J]. The Journal of Physical Chemistry C, 2016, 120(22): 12249–12253. doi: 10.1021/acs.jpcc.6b01858 [20] CUI S X, FENG W X, HU H Q, et al. Structural stabilities, electronic and optical properties of CaF2 under high pressure: a first-principles study [J]. Computational Materials Science, 2009, 47(1): 41–45. doi: 10.1016/j.commatsci.2009.06.011 [21] GERWARD L, OLSEN J S, STEENSTRUP S, et al. X-ray diffraction investigations of CaF2 at high pressure [J]. Journal of Applied Crystallography, 1992, 25(5): 578–581. doi: 10.1107/S0021889892004096 [22] DORFMAN S M, JIANG F M, MAO Z, et al. Phase transitions and equations of state of alkaline earth fluorides CaF2, SrF2, and BaF2 to Mbar pressures [J]. Physical Review B, 2010, 81(17): 174121. doi: 10.1103/PhysRevB.81.174121 [23] WANG J S, HAO J, WANG Q S, et al. Pressure-induced structural transition in CaF2 nanocrystals [J]. Physica Status Solidi B, 2011, 248(5): 1115–1118. doi: 10.1002/pssb.201000627 [24] WANG J S, YANG J H, HU T J, et al. Structural phase transition and compressibility of CaF2 nanocrystals under high pressure [J]. Crystals, 2018, 8(5): 199. doi: 10.3390/cryst8050199 [25] WANG J S, ZHU H Y, MA C L, et al. High-pressure behaviors of SrF2 nanocrystals with two morphologies [J]. The Journal of Physical Chemistry C, 2013, 117(1): 615–619. doi: 10.1021/jp306742p [26] WANG J S, MA C L, ZHU H Y, et al. Structural transition of BaF2 nanocrystals under high pressure [J]. Chinese Physics C, 2013, 37(8): 088001. doi: 10.1088/1674-1137/37/8/088001 [27] WANG X, ZHUANG J, PENG Q, et al. A general strategy for nanocrystal synthesis [J]. Nature, 2005, 437(7055): 121–124. doi: 10.1038/nature03968 [28] ZHANG X M, QUAN Z W, YANG J, et al. Solvothermal synthesis of well-dispersed MF2 (M = Ca, Sr, Ba) nanocrystals and their optical properties [J]. Nanotechnology, 2008, 19(7): 075603. doi: 10.1088/0957-4484/19/7/075603 [29] BIRCH F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 °K [J]. Journal of Geophysical Research, 1978, 83(B3): 1257–1268. doi: 10.1029/JB083iB03p01257 [30] WANG J S, MA C L, ZHOU D, et al. Structural phase transitions of SrF2 at high pressure [J]. Journal of Solid State Chemistry, 2012, 186: 231–234. doi: 10.1016/j.jssc.2011.12.015 [31] HALL E O. The deformation and ageing of mild steel: Ⅲ discussion of results [J]. Proceedings of the Physical Society. Section B, 1951, 64(9): 747–753. doi: 10.1088/0370-1301/64/9/303 [32] PETCH N J. The cleavage strength of polycrystals [J]. Journal of the Iron and Steel Institute, 1953, 174: 25–28. [33] QADRI S B, YANG J, RATNA B R, et al. Pressure induced structural transitions in nanometer size particles of PbS [J]. Applied Physics Letters, 1996, 69(15): 2205–2207. doi: 10.1063/1.117166 [34] ANGEL R J. The high-pressure, high-temperature equation of state of calcium fluoride, CaF2 [J]. Journal of Physics: Condensed Matter, 1993, 5(11): L141–L144. doi: 10.1088/0953-8984/5/11/001