Processing math: 100%

Size-Dependent Structural Phase Transition Behaviors of CaF2 Nanocrystals

GONG Lei WANG Jingshu ZHANG Junkai CHEN Guangbo ZHANG Han WU Xiaoxin HU Tingjing CUI Hang

GONG Lei, WANG Jingshu, ZHANG Junkai, CHEN Guangbo, ZHANG Han, WU Xiaoxin, HU Tingjing, CUI Hang. Size-Dependent Structural Phase Transition Behaviors of CaF2 Nanocrystals[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 021102. doi: 10.11858/gywlxb.20210842
Citation: GONG Lei, WANG Jingshu, ZHANG Junkai, CHEN Guangbo, ZHANG Han, WU Xiaoxin, HU Tingjing, CUI Hang. Size-Dependent Structural Phase Transition Behaviors of CaF2 Nanocrystals[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 021102. doi: 10.11858/gywlxb.20210842
巩蕾, 王婧姝, 张俊凯, 陈广博, 张晗, 武晓鑫, 胡廷静, 崔航. CaF2纳米晶粒结构相变行为的尺寸依赖性[J]. 高压物理学报, 2022, 36(2): 021102. doi: 10.11858/gywlxb.20210842
引用本文: 巩蕾, 王婧姝, 张俊凯, 陈广博, 张晗, 武晓鑫, 胡廷静, 崔航. CaF2纳米晶粒结构相变行为的尺寸依赖性[J]. 高压物理学报, 2022, 36(2): 021102. doi: 10.11858/gywlxb.20210842

Size-Dependent Structural Phase Transition Behaviors of CaF2 Nanocrystals

doi: 10.11858/gywlxb.20210842
Funds: National Natural Science Foundation of China (11904128); Thirteenth Five-Year Program for Science and Technology of Education Department of Jilin Province (JJKH20200410KJ); Academic Graduate Students Scientific Research Innovation Fund of Jilin Normal University (202005)
More Information
    Author Bio:

    GONG Lei (1998-), female, bachelor, major in high pressure structural phase transition of nanomaterials. E-mail: gl15734441063@126.com

    Corresponding author: WANG Jingshu (1982-), female, doctor, associate professor, major in high pressure behavior of nanomaterials. E-mail: wjs@jlnu.edu.cn
  • 摘要: 利用原位高压同步辐射X射线衍射方法,对尺寸为11 nm的CaF2纳米晶粒进行高压结构相变和压缩特性研究。当压力为12 GPa时,观察到由萤石结构向 α-PbCl2结构转变的一次相变,该相变压力点远高于体材料,但略低于粒径更小的 CaF2 纳米晶体。相比体材料,纳米尺寸的CaF2样品的体弹模量更大,说明其更难被压缩。当压力释放至常压时,11 nm的CaF2纳米晶粒的α-PbCl2型亚稳相结构被保留下来,相变不可逆。分析了影响11 nm CaF2纳米晶粒独特高压行为的原因,判定尺寸效应为主要因素,该尺寸下较高的表面能导致结构稳定性增强和体积模量增加。

     

  • Nanoscale inorganic materials with unique electrical, optical and mechanical properties, which are distinct from their bulk counterparts, attract attention in both fundamental scientific research and industrial applications[1-3]. Investigations on the phase transformation and the structural stability of nanomaterials under high pressure are conducted in physics, materials science, geophysics[4-9]. Numerous studies on nanomaterials under high pressure have revealed that the grain size plays an important role in the pressure-induced phase transition behaviors. A number of interesting high-pressure behaviors and new properties in nanomaterials appear when the grain size is smaller than a critical size. Studies on CdSe, CdS, ZnO and ZnS nanocrystals observe the size-dependent phase transformations[10-13]. Lv, et al. [14] reports that the Mn3O4 nanoparticles show a different phase transformation route and a new high-pressure phase at 14.5–23.5 GPa, which has been recognized to be the orthorhombic CaTi2O4-type structure. The crystalline-amorphous transition is discovered in materials such as Y2O3, TiO2, PbTe and BaF2[15-19]. Therefore, high-pressure studies on nanomaterials are significant for the discovery of new structures and properties of materials.

    Calcium fluoride (CaF2), a typical face-centered-cubic ionic crystal, has been widely used in many fields[2-3]. Due to its simple crystal structure, CaF2 becomes an ideal material for high-pressure research. High-pressure X-ray diffraction (XRD) and Raman spectroscopy studies of bulk CaF2 have shown that it undergoes two structural transitions and finally reaches highly coordinated structures. The pressure-induced phase transition from the fluorite structure (space group: Fm3m) to the α-PbCl2-type structure (space group: Pnma) has been found in the pressure range of 8–10 GPa[20-21]. Dorfman, et al.[22] have reported that bulk CaF2 transforms from the α-PbCl2-type structure into the hexagonal structure at 79 GPa and 2 000 K. Inspired by the size effect of nano-sized materials, our group has made progresses in different structural phase transitions and in the compressibility for nanosized MF2 (M=Ca, Sr, Ba) particles at high pressures[19, 23-26]. Previous high-pressure studies on the 8 nm CaF2 nanocrystals reveals that the structural phase transition from the fluorite-type structure into the orthorhombic α-PbCl2-type structure starts at 14 GPa, and the transition pressure is higher than that of the bulk CaF2[23]. Recently, we have performed high-pressure studies on the 23 nm CaF2 nanocrystals up to 23.5 GPa using synchrotron XRD measurement. We have found that the transition from the fluorite to the orthorhombic phase occurrs at 9.5 GPa, significantly lower than the transition pressure of the 8 nm CaF2 nanocrystals, but close to that of the bulk materials[24]. Further analysis indicates that the defect effect in the 23 nm CaF2 nanocrystals plays a key role in the structural stability. Nevertheless, the high pressure induced structural phase transition of the CaF2 nanocrystals with other sizes has not been reported. The phase-transition mechanism and the compressibility of the nanoscale CaF2 are still unclear. In order to further investigate the high pressure behaviors of the nanosized CaF2, and to confirm whether there is a size-dependent phase transformation at high pressure, more high pressure experimental data for various sized CaF2 nanocrystals is urgently needed.

    Here we investigate the high-pressure behaviors of the CaF2 nanocrystals with an average grain size of 11 nm using in-situ XRD. We analyse the phase stability, the bulk modulus and the compressibility of the synthesized 11 nm-sized CaF2 nanocrystals in details. Through comparing the high pressure experimental data of different sized CaF2 materials, the main factor influencing the structural stability and compression properties of the CaF2 nanomaterials is explored.

    The 11 nm-sized CaF2 nanocrystals were prepared by a typical synthesis procedure, as reported in literatures[27-28]. 2 mmol Ca(NO3)2 and 4 mmol NaF were added into a mixture which consisted of ethanol, oil acid, and sodium hydroxide. After being vigorously stirred, the white suspension was transferred into a 40 mL autoclave. The heat-treatment condition at a temperature of 160℃ was maintained for 24 h. Then, the autoclave was cooled down to room temperature, and the final products were collected after centrifugation and drying treatments.

    The crystalline structure, the morphology and the particle size of the CaF2 nanocrystals were examined by XRD (D8 DISCOVER GADDS) with Cu Kα radiation (λ=1.5418 Å) and by high-resolution transmission electron microscopy (HRTEM, H-7500). The sample was loaded into a diamond anvil cell (DAC) with a culet size of 400 μm for high-pressure analysis. The fluorescence shift of the ruby R1 line was utilized to calibrate the pressure, and an methanol-ethanol mixture with a volume ratio of 4∶1 was chosen as the pressure-transmitting medium. High-pressure XRD experiment was performed at B2 High-Pressure Station of Cornell High Energy Synchrotron Source (CHESS) with a wavelength of 0.485946 Å. MAR165 CCD detector was used to collect the XRD data. The 2D XRD images were integrated using FIT2D software. Materials Studio program was performed to refine the crystal structure using the high-pressure synchrotron XRD patterns.

    Fig.1(a) exhibits the dimension and the morphology of the synthesized CaF2 nanocrystals, and the corresponding particles’ size distribution histogram is presented in Fig.1(b). Fig.1 reveals that all the nanoparticles are well dispersed and almost sphere with an average diameter of (11 ± 2) nm. The selected-area electron diffraction (SAED) pattern (inset in Fig.1(a)) shows that the major diffraction rings of the fluorite structure, indicating that the synthezied CaF2 nanocrystals have probably the fluorite structure.

    Figure  1.  (a) TEM image of the as-synthesized CaF2 nanocrystals; (b) particle size distribution of the CaF2 nanocrystals

    Fig.2 presents the Rietveld refinement of the diffraction pattern of the synthesized CaF2 nano-particles at ambient conditions. The great agreement between simulations and XRD experiments at ambient conditions with the residuals Rwp=7.73% and Rp=5.99% unraveled that the ambient pressure phase adopts a fluorite structure with a space group of Fm3m. The fluorite structure is constructed by the Ca atoms occupying the (0, 0, 0) positions and by the F atoms occupying the (0.25, 0.25, 0.25) positions. The cubic structure has an lattice constant of 5.461(2) Å. It is consistent with the value of a0=5.463 Å (JCPDS Card No. 35-0816).

    Figure  2.  Rietveld refinement of the diffraction pattern of the synthesized CaF2 nanoparticles (Red dots, upper (blue), and lower (black) solid lines represent experimental, calculated, and residual patterns, respectively.)

    Fig.3 displays the selected high-pressure XRD patterns of the CaF2 nanocrystals under different pressures up to 28.6 GPa. At 1.0 GPa, six diffraction peaks of (111)c, (220)c, (311)c, (400)c, (331)c and (422)c of the CaF2 nanocrystals are observed, together with one peak of the T-301 stainless steel gasket (marked by asterisk). When the pressure reaches 12 GPa, the (111) diffraction peak becomes asymmetric, and a new diffraction peak starts to appear at the right side of the (111) peak, which indicates the occurrence of a phase transition from the fluorite structure to the α-PbCl2-type structure. The transition pressure is much higher than the one reported in the bulk CaF2 materials and slightly lower than that of the 8 nm-sized CaF2 nanocrystals[23]. When the pressure increases to 20.8 GPa, all the diffraction peaks (120)o, (111)o, (121)o, (211)o, (031)o, (002)o and (240)o can be assigned to the arised high pressure phase, illustrating the completion of the phase transition. The α-PbCl2-type structure is stable up to 28.6 GPa (the highest pressure in this study). Then the sample is decompressed to ambient pressure, and it turns out that the pure high-pressure α-PbCl2-type structure is retained, which indicates the phase transformation is irreversible. Fig.4 presents the Rietveld refinement of the diffraction pattern of the CaF2 nanocrystals at ambient conditions after decompression, and it shows a quite good agreement with the α-PbCl2-type structure (with the residual Rwp=0.40 %).

    Figure  3.  High-pressure XRD patterns of the CaF2 nanocrystals, in which the peak (marked by asterisk) is derived from the gasket
    Figure  4.  Rietveld refinement of the diffraction pattern of the CaF2 nanocrystals at ambient conditions after decompression (Red dots, upper (blue), and lower (black) lines represent experimental, calculated, and residual patterns, respectively.)

    Fig.5 shows the compressibility of the CaF2 nanocrystals. A third-order Birch-Murnaghan (BM) equation of state (EOS) is fitted to the experimental p-V data[29]

    Figure  5.  Unit-cell volume as a function of pressure determined for the 11 nm-sized CaF2 nanocrystals (Solid curves are the Birch-Murnaghan EOS fits to the experimental data. Error bars are observed when they are large enough to exceed the sizes of the marked dots.)
    p=(3/2)B0[(V/V0)7/3(V/V0)5/3]{1+(3/4)(B04)×[(V/V0)2/31]} (1)

    where V0 is the zero-pressure volume, V is the volume at pressure p given in GPa (V0 and V were calculated by JADE program), B0 is the isothermal bulk modulus, B0 is the first pressure derivative of the bulk modulus. For the CaF2 nanocrystals, the fitting yield B0 = 109(5) GPa, B0 = 5 for the fluorite structure, and B0 = 89(1) GPa, B0 = 4 for the α-PbCl2-type structure. The isothermal bulk modulus of the α-PbCl2-type phase is lower than that of the fluorite phase. The lower bulk modulus of the high-pressure phase of the CaF2 nanocrystals at high pressure indicates a higher compressibility. This result is consistent with the previous studies on the bulk CaF2, but it is different from the bulks SrF2 and BaF2 which have lower compressibility under high pressure[22, 30]. The bulk moduli of the 11 nm-sized CaF2 nanocrystals for the fluorite and the α-PbCl2-type structure are both significantly larger than those of the bulk CaF2[2122] and the 23 nm-sized CaF2 nanocrystals[24], indicating a higher incompressibility for the CaF2 nanocrystals with smaller grain size. In terms of the Hall-Petch effect[31-32], a continuous decrease of grain size could further elevate material hardness, thus, the increase in bulk modulus of 11 nm-sized CaF2 nanocrystals can be easily understood.

    Table 1 summarizes the phase transition pressure (pT), the EOS parameters (B0 and B0) of the bulk CaF2 and the CaF2 nanocrystals with different grain sizes, which clearly reveals the differences between the bulk and the nanoscale CaF2. It is found that the phase transition pressure and the bulk modulus of the 11 nm-sized CaF2 nanocrystals are higher than those of the bulk CaF2 and the 23 nm-sized CaF2 nanocrystals. A large number of high pressure investigations indicate that many nanomaterials (e.g., CdSe, ZnS and PbS) exhibit obvious elevations of structural stability compared with their bulk materials, which is attributed to the higher surface energies in nanomaterials[10, 13, 33]. Compared with the bulk CaF2 and the 23 nm-sized CaF2 nanocrystals, a relatively higher surface energy is expected for the 11 nm-sized CaF2 nanocrystals, and thus the elevations both in the transition pressure and in the bulk modulus can be easily understood.

    Table  1.  Transition pressure (pT), and EOS parameters (B0 and B0 ′) of the fluorite-type and the α-PbCl2-type CaF2
    MorphologySizepT/GPaB0/GPa B0
    Fm3mPnmaFm3mPnma
    BulkMicro9.5[21]87(5) [21]74(5) [22] 54.7
    9[34]81(1) [34]5.22
    8.1[20]79.54[20]70.92[20]4.544.38
    Nanocrystals8 nm14[23]112(6)93(9) 54
    23 nm9.5[24]103(2) [24]78(2) [24]54
    11 nm12109(5)89(1)54
     | Show Table
    DownLoad: CSV

    Besides the different high-pressure behaviors with the bulk CaF2 and the 23 nm-sized CaF2 nanocrystals, Table 1 shows that the 11 nm-sized CaF2 nanocrystals exhibit a lower transition pressure[23] and a lower bulk modulus compared with the 8 nm-sized CaF2 nanocrystals. To the best of our knowledge, defects and grain size are considered to be the main factors in influencing the high-pressure behaviors of the 11 nm-sized CaF2 nanocrystals and the 8 nm-sized CaF2 nanocrystals. For further analyses, we have carried out HRTEM measurements of many grains of the 11 nm-sized CaF2. The HRTEM image is given in Fig.6, it shows that the 11 nm-sized CaF2 nanocrystals have no visible defects and dislocations, indicating a relatively low defect concentration. Obviously, the decrease of the transition pressure in the 11 nm-sized CaF2 nanocrystals cannot be attributed to the defects (or dislocation) effect. Therefore, the differences in the phase transformations between the 11 nm and the 8 nm-sized CaF2 nanocrystals may be caused by the grain size effect. The 8 nm-sized CaF2 nanocrystals, which have a smaller grain size, possess a higher surface energy, that could result in the elevation of the phase transition pressure.

    Figure  6.  HRTEM image of the as-synthesized 11 nm-sized CaF2 nanocrystals.

    Our results illustrate that the transition pressure dramatically increases as the size of the grains decreases, and the CaF2 nanocrystals show a noticeable size-dependence of phase transformation at high pressure when the grain size below 11 nm. Therefore, it can be reasonably concluded that the critical size of the CaF2 nanocrystals, marking the oneset of nanoscal effect, is larger than 11 nm. For the 11 nm-sized CaF2 nanocrystals, the high-pressure metastable structure (α-PbCl2-type structure) is retained after the pressure is released, without observing the fluorite structure. This result is in good accordance with the oberservation for the 8 nm-sized CaF2 nanocrystals[23], but it is different with those of the bulk CaF2 and the 23 nm-sized CaF2 nanocrystals whose transformations are completely or partially reversible[21, 24]. The inreversibility of the 11 nm-sized CaF2 nanocrystals might be due to the high surface energy, which lead to the solid-solid phase transition hysteresis after decompression. Discovering novel high-pressure metastable structure is one of the main purposes of the high pressure study of the CaF2 nanocrystals.

    In summary, the high-pressure behaviors of the CaF2 nanocrystals with an average grain size of 11 nm have been investigated by in-situ XRD. The phase transition from the fluorite structure to the α-PbCl2-type structure occurrs at 12 GPa, which is much higher than the value observed for the bulk CaF2 and slightly lower than that of the 8 nm-sized CaF2 nanocrystals. The bulk moduli of the CaF2 nanocrystals with the fluorite or the α-PbCl2-type structures are all larger than those of the bulk CaF2, indicating a high incompressibility of nanosized CaF2. The pure α-PbCl2-type metastable structure is retained in the 11 nm-sized CaF2 nanocrystals after decompression. Such distinct high-pressure behaviors of the 11 nm-sized CaF2 nanocrystals are considered to be mainly due to the grain size effect. When the size is below the critical size, the high surface energy begins directing the enhancement of the structural stability and the increase of the bulk modulus.

  • Figure  1.  (a) TEM image of the as-synthesized CaF2 nanocrystals; (b) particle size distribution of the CaF2 nanocrystals

    Figure  2.  Rietveld refinement of the diffraction pattern of the synthesized CaF2 nanoparticles (Red dots, upper (blue), and lower (black) solid lines represent experimental, calculated, and residual patterns, respectively.)

    Figure  3.  High-pressure XRD patterns of the CaF2 nanocrystals, in which the peak (marked by asterisk) is derived from the gasket

    Figure  4.  Rietveld refinement of the diffraction pattern of the CaF2 nanocrystals at ambient conditions after decompression (Red dots, upper (blue), and lower (black) lines represent experimental, calculated, and residual patterns, respectively.)

    Figure  5.  Unit-cell volume as a function of pressure determined for the 11 nm-sized CaF2 nanocrystals (Solid curves are the Birch-Murnaghan EOS fits to the experimental data. Error bars are observed when they are large enough to exceed the sizes of the marked dots.)

    Figure  6.  HRTEM image of the as-synthesized 11 nm-sized CaF2 nanocrystals.

    Table  1.   Transition pressure (pT), and EOS parameters (B0 and B0 ′) of the fluorite-type and the α-PbCl2-type CaF2

    MorphologySizepT/GPaB0/GPa B0
    Fm3mPnmaFm3mPnma
    BulkMicro9.5[21]87(5) [21]74(5) [22] 54.7
    9[34]81(1) [34]5.22
    8.1[20]79.54[20]70.92[20]4.544.38
    Nanocrystals8 nm14[23]112(6)93(9) 54
    23 nm9.5[24]103(2) [24]78(2) [24]54
    11 nm12109(5)89(1)54
    下载: 导出CSV
  • [1] WANG G F, PENG Q, LI Y D. Upconversion luminescence of monodisperse CaF2: Yb3+/Er3+ nanocrystals [J]. Journal of the American Chemical Society, 2009, 131(40): 14200–14201. doi: 10.1021/ja906732y
    [2] ZHANG C M, LI C X, PENG C, et al. Facile and controllable synthesis of monodisperse CaF2 and CaF2: Ce3+/Tb3+ hollow spheres as efficient luminescent materials and smart drug carriers [J]. Chemistry—A European Journal, 2010, 16(19): 5672–5680. doi: 10.1002/chem.200903137
    [3] ALHARBI N D. Size controlled CaF2 nanocubes and their dosimetric properties using photoluminescence technique [J]. Journal of Nanomaterials, 2015: 136957.
    [4] XIAO G J, WANG K, ZHU L, et al. Pressure-induced reversible phase transformation in nanostructured Bi2Te3 with reduced transition pressure [J]. The Journal of Physical Chemistry C, 2015, 119(7): 3843–3848. doi: 10.1021/jp512565b
    [5] GUPTA S K, ZUNIGA J P, POKHREL M, et al. High pressure induced local ordering and tunable luminescence of La2Hf2O7: Eu3+ nanoparticles [J]. New Journal of Chemistry, 2020, 44(14): 5463–5472. doi: 10.1039/D0NJ00585A
    [6] ZHAO R, WANG P, YAO B B, et al. Co-effect on zinc blende-rocksalt phase transition in CdS nanocrystals [J]. RSC Advances, 2015, 5(23): 17582–17587. doi: 10.1039/C4RA14798G
    [7] ZHANG J, ZHU H Y, WU X X, et al. Plasma-assisted synthesis and pressure-induced structural transition of single-crystalline SnSe nanosheets [J]. Nanoscale, 2015, 7(24): 10807–10816. doi: 10.1039/C5NR02131F
    [8] MENG L Y, LANE J M D, BACA L, et al. Shape dependence of pressure-induced phase transition in CdS semiconductor nanocrystals [J]. Journal of the American Chemical Society, 2020, 142(14): 6505–6510. doi: 10.1021/jacs.0c01906
    [9] SRIVASTAVA A, TYAGI N, SHARMA U S, et al. Pressure induced phase transformation and electronic properties of AlAs [J]. Materials Chemistry and Physics, 2011, 125(1/2): 66–71.
    [10] TOLBERT S H, ALIVISATOS A P. Size dependence of a first order solid-solid phase transition: the wurtzite to rock salt transformation in CdSe nanocrystals [J]. Science, 1994, 265(5170): 373–376. doi: 10.1126/science.265.5170.373
    [11] MARTÍN-RODRÍGUEZ R, GONZÁLEZ J, VALIENTE R, et al. Reversibility of the zinc-blende to rock-salt phase transition in cadmium sulfide nanocrystals [J]. Journal of Applied Physics, 2012, 111(6): 063516. doi: 10.1063/1.3697562
    [12] BUSHIRI M J, VINOD R, SEGURA A, et al. Pressure-induced phase transition in hydrothermally grown ZnO nanoflowers investigated by Raman and photoluminescence spectroscopy [J]. Journal of Physics: Condensed Matter, 2015, 27(38): 385401. doi: 10.1088/0953-8984/27/38/385401
    [13] WANG Z W, GUO Q X. Size-dependent structural stability and tuning mechanism: a case of zinc sulfide [J]. The Journal of Physical Chemistry C, 2009, 113(11): 4286–4295. doi: 10.1021/jp808244a
    [14] LV H, YAO M G, LI Q J, et al. Effect of grain size on pressure-induced structural transition in Mn3O4 [J]. The Journal of Physical Chemistry C, 2012, 116(3): 2165–2171. doi: 10.1021/jp2067028
    [15] WANG L, YANG W G, DING Y, et al. Size-dependent amorphization of nanoscale Y2O3 at high pressure [J]. Physical Review Letters, 2010, 105(9): 095701. doi: 10.1103/PhysRevLett.105.095701
    [16] SWAMY V, KUZNETSOV A, DUBROVINSKY L S, et al. Size-dependent pressure-induced amorphization in Nanoscale TiO2 [J]. Physical Review Letters, 2006, 96(13): 135702. doi: 10.1103/PhysRevLett.96.135702
    [17] LI Q J, LIU B B, WANG L, et al. Pressure-induced amorphization and polyamorphism in one-dimensional single-crystal TiO2 nanomaterials [J]. The Journal of Physical Chemistry Letters, 2010, 1(1): 309–314. doi: 10.1021/jz9001828
    [18] QUAN Z W, WANG Y X, BAE I T, et al. Reversal of hall-petch effect in structural stability of PbTe nanocrystals and associated variation of phase transformation [J]. Nano Letters, 2011, 11(12): 5531–5536. doi: 10.1021/nl203409s
    [19] WANG J S, CUI Q L, HU T J, et al. Pressure-induced amorphization in BaF2 nanoparticles [J]. The Journal of Physical Chemistry C, 2016, 120(22): 12249–12253. doi: 10.1021/acs.jpcc.6b01858
    [20] CUI S X, FENG W X, HU H Q, et al. Structural stabilities, electronic and optical properties of CaF2 under high pressure: a first-principles study [J]. Computational Materials Science, 2009, 47(1): 41–45. doi: 10.1016/j.commatsci.2009.06.011
    [21] GERWARD L, OLSEN J S, STEENSTRUP S, et al. X-ray diffraction investigations of CaF2 at high pressure [J]. Journal of Applied Crystallography, 1992, 25(5): 578–581. doi: 10.1107/S0021889892004096
    [22] DORFMAN S M, JIANG F M, MAO Z, et al. Phase transitions and equations of state of alkaline earth fluorides CaF2, SrF2, and BaF2 to Mbar pressures [J]. Physical Review B, 2010, 81(17): 174121. doi: 10.1103/PhysRevB.81.174121
    [23] WANG J S, HAO J, WANG Q S, et al. Pressure-induced structural transition in CaF2 nanocrystals [J]. Physica Status Solidi B, 2011, 248(5): 1115–1118. doi: 10.1002/pssb.201000627
    [24] WANG J S, YANG J H, HU T J, et al. Structural phase transition and compressibility of CaF2 nanocrystals under high pressure [J]. Crystals, 2018, 8(5): 199. doi: 10.3390/cryst8050199
    [25] WANG J S, ZHU H Y, MA C L, et al. High-pressure behaviors of SrF2 nanocrystals with two morphologies [J]. The Journal of Physical Chemistry C, 2013, 117(1): 615–619. doi: 10.1021/jp306742p
    [26] WANG J S, MA C L, ZHU H Y, et al. Structural transition of BaF2 nanocrystals under high pressure [J]. Chinese Physics C, 2013, 37(8): 088001. doi: 10.1088/1674-1137/37/8/088001
    [27] WANG X, ZHUANG J, PENG Q, et al. A general strategy for nanocrystal synthesis [J]. Nature, 2005, 437(7055): 121–124. doi: 10.1038/nature03968
    [28] ZHANG X M, QUAN Z W, YANG J, et al. Solvothermal synthesis of well-dispersed MF2 (M = Ca, Sr, Ba) nanocrystals and their optical properties [J]. Nanotechnology, 2008, 19(7): 075603. doi: 10.1088/0957-4484/19/7/075603
    [29] BIRCH F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 °K [J]. Journal of Geophysical Research, 1978, 83(B3): 1257–1268. doi: 10.1029/JB083iB03p01257
    [30] WANG J S, MA C L, ZHOU D, et al. Structural phase transitions of SrF2 at high pressure [J]. Journal of Solid State Chemistry, 2012, 186: 231–234. doi: 10.1016/j.jssc.2011.12.015
    [31] HALL E O. The deformation and ageing of mild steel: Ⅲ discussion of results [J]. Proceedings of the Physical Society. Section B, 1951, 64(9): 747–753. doi: 10.1088/0370-1301/64/9/303
    [32] PETCH N J. The cleavage strength of polycrystals [J]. Journal of the Iron and Steel Institute, 1953, 174: 25–28.
    [33] QADRI S B, YANG J, RATNA B R, et al. Pressure induced structural transitions in nanometer size particles of PbS [J]. Applied Physics Letters, 1996, 69(15): 2205–2207. doi: 10.1063/1.117166
    [34] ANGEL R J. The high-pressure, high-temperature equation of state of calcium fluoride, CaF2 [J]. Journal of Physics: Condensed Matter, 1993, 5(11): L141–L144. doi: 10.1088/0953-8984/5/11/001
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  996
  • HTML全文浏览量:  571
  • PDF下载量:  39
出版历程
  • 收稿日期:  2021-07-12
  • 修回日期:  2021-08-05
  • 录用日期:  2021-07-12

目录

/

返回文章
返回