序贯起爆参数对定向战斗部毁伤效能的影响

张浩宇 张树凯 程立 李元 温玉全

张浩宇, 张树凯, 程立, 李元, 温玉全. 序贯起爆参数对定向战斗部毁伤效能的影响[J]. 高压物理学报, 2022, 36(2): 025101. doi: 10.11858/gywlxb.20210836
引用本文: 张浩宇, 张树凯, 程立, 李元, 温玉全. 序贯起爆参数对定向战斗部毁伤效能的影响[J]. 高压物理学报, 2022, 36(2): 025101. doi: 10.11858/gywlxb.20210836
ZHANG Haoyu, ZHANG Shukai, CHENG Li, LI Yuan, WEN Yuquan. Influence of Sequential Initiation Parameters on Damage Effectiveness of Aimed Warhead[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025101. doi: 10.11858/gywlxb.20210836
Citation: ZHANG Haoyu, ZHANG Shukai, CHENG Li, LI Yuan, WEN Yuquan. Influence of Sequential Initiation Parameters on Damage Effectiveness of Aimed Warhead[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025101. doi: 10.11858/gywlxb.20210836

序贯起爆参数对定向战斗部毁伤效能的影响

doi: 10.11858/gywlxb.20210836
基金项目: 国家自然科学基金委员会-中国工程物理研究院NSAF联合基金(U1530135)
详细信息
    作者简介:

    张浩宇(1996-),男,硕士研究生,主要从事战斗部毁伤效应研究.E-mail:zhy19961018@163.com

    通讯作者:

    温玉全(1965-),男,博士,副教授,主要从事火工系统理论与爆炸毁伤技术研究.E-mail:wyquan@bit.edu.cn

  • 中图分类号: O389; TJ55

Influence of Sequential Initiation Parameters on Damage Effectiveness of Aimed Warhead

  • 摘要: 为提高定向战斗部的毁伤效能,明确序贯起爆参数对定向战斗部毁伤效能的影响,运用LS-DYNA有限元程序,采用破片速度差累加和飞散角累加的方法,研究了不同序贯起爆参数下破片初始威力参数,利用毁伤概率法,计算了不同序贯起爆参数下战斗部对地面军用车辆的毁伤效能。结果表明:起爆线个数和起爆线夹角主要影响破片速度大小,起爆延时时间主要影响破片速度大小和飞散角正负占比。相对于偏心一线和三线序贯起爆,偏心两线序贯起爆在落高为7~9 m时有7.5~25.0 m2的毁伤面积。当起爆线夹角由30°增大到120°,落高为4~8 m时,战斗部对地面军用车辆的毁伤面积降低3.9%~60.3%。序贯起爆的延时时间由零增加到0.75倍的相邻起爆点间爆轰波传播时间,落高为4~8 m时,战斗部的毁伤面积增加8.4%~87.2%。当起爆方式采用偏心两线序贯起爆,起爆线夹角取30°~60°,延时时间取0.50~0.75倍的相邻起爆点间爆轰波传播时间时,破片战斗部对地面军用车辆目标具有较好的毁伤效能。

     

  • 图  战斗部结构(单位:mm)

    Figure  1.  Warhead structure (Unit: mm)

    图  战斗部的有限元模型

    Figure  2.  Finite element model of warhead

    图  战斗部落地示意图

    Figure  3.  Schematic diagram of the warhead landing

    图  破片的飞行轨迹及落点

    Figure  4.  Flight trajectory and falling point of fragments

    图  起爆点的布置

    Figure  5.  Layouts of initiation points

    图  破片速度云图

    Figure  6.  Cloud chart of fragment velocity

    图  静爆状态下所研究的破片区域

    Figure  7.  Fragmentation area studied under static explosion state

    图  破片威力参数

    Figure  8.  Fragment power parameters

    图  毁伤面积和有效破片个数

    Figure  9.  Damage area and number of effective fragments

    图  10  破片速度云图

    Figure  10.  Cloud chart of fragment velocity

    图  11  破片威力参数

    Figure  11.  Fragment power parameters

    图  12  毁伤面积和有效破片个数

    Figure  12.  Damage area and number of effective fragments

    图  13  破片速度云图

    Figure  13.  Cloud chart of fragment velocity

    图  14  破片威力参数

    Figure  14.  Fragment power parameters

    图  15  毁伤面积和有效破片个数

    Figure  15.  Damage area and number of effective fragments

    表  1  Comp. B炸药参数

    Table  1.   Parameters of Comp. B explosive

    $\,\rho{_0}$/(g·cm−3)pCJ/GPaDCJ/(m·s−1)A/GPaB/GPaR1R2$\omega $
    1.71729.57890524.237.6784.21.10.34
    下载: 导出CSV

    表  2  空气的材料参数

    Table  2.   Parameters of air

    $\,\rho{_0}$/(kg·m−3)C1C2C3C4C5
    1.290000.40.4
    下载: 导出CSV

    表  3  衬筒、外壳及端盖的材料参数

    Table  3.   Parameters of liner, shell and end cap

    Component$\,\rho{_0}$/(g·cm−3)Elastic modulus/GPaPoisson’s ratioYield limit/GPan
    Liner2.70 720.330.3100.7
    Shell, end cap7.832100.300.3551.0
    下载: 导出CSV

    表  4  破片的材料参数

    Table  4.   Parameters of fragment

    $\,\rho{_0}$/(g·cm−3)Young’s modulus/GPaPoisson’s ratio
    17.511170.22
    下载: 导出CSV

    表  5  不同起爆线个数条件下破片的性能参数

    Table  5.   Fragment performance parameters under different numbers of initiation lines

    Initiation linevmax/(m·s−1)Velocity gain/%$\delta $+/% $\delta $/%
    Central single point2023.6020.179.9
    Sequential one line2234.710.423.476.6
    Sequential two lines2297.913.621.678.4
    Sequential three lines2315.714.421.478.6
    下载: 导出CSV

    表  6  不同起爆线夹角的破片性能参数

    Table  6.   The fragment performance parameters under different initiation line angles

    β/(°)vmax/(m·s−1)Velocity gain/%$\delta $+/% $\delta $/%
    302265.211.922.977.1
    452292.813.322.177.9
    602297.913.621.678.4
    902286.313.022.677.4
    1202218.49.623.276.8
    下载: 导出CSV

    表  7  不同起爆线延时时间的破片性能参数

    Table  7.   Fragment performance parameters under different initiation delay time

    Tvmax/(m·s−1)Velocity gain/% $\delta $+/% $\delta $/%
    02295.813.550.549.5
    0.25t2346.716.025.474.6
    0.50t2297.913.621.678.4
    0.75t2221.39.819.680.4
    下载: 导出CSV
  • [1] 崔瀚, 张国新. 定向战斗部研究现状及展望 [J]. 飞航导弹, 2019(3): 84–89.

    CUI H, ZHANG G X. The status and prospect of aimed warhead [J]. Aerodynamic Missile Journal, 2019(3): 84–89.
    [2] LI W, HUANG G Y, FENG S S. Effect of eccentric edge initiation on the fragment velocity distribution of a cylindrical casing filled with charge [J]. International Journal of Impact Engineering, 2015, 80: 107–115.
    [3] WANG L, HAN F, ZHOU Q. The projection angles of fragments from a cylindrical casing filled with charge initiated at one end [J]. International Journal of Impact Engineering, 2017, 103: 138–148. doi: 10.1016/j.ijimpeng.2017.01.012
    [4] HUANG G Y, LI W, FENG S S. Fragment velocity distribution of cylindrical rings under eccentric point initiation [J]. Propellants, Explosives, Pyrotechnics, 2015, 40: 215–220. doi: 10.1002/prep.201400180
    [5] WANG M, LU F Y, LI X Y, et al. A formula for calculating the velocities of fragments from velocity enhanced warhead [J]. Propellants, Explosives, Pyrotechnics, 2013, 38(2): 232–237. doi: 10.1002/prep.201200025
    [6] LI Y, LI Y H, WEN Y Q. Radial distribution of fragment velocity of asymmetrically initiated warhead [J]. International Journal of Impact Engineering, 2017, 99: 39–47. doi: 10.1016/j.ijimpeng.2016.09.007
    [7] 王树山, 马晓飞, 隋树元, 等. 偏心多点起爆战斗部破片飞散实验研究 [J]. 北京理工大学学报, 2001, 21(2): 177–179. doi: 10.3969/j.issn.1001-0645.2001.02.008

    WANG S S, MA X F, SUI S Y, et al. Experimental research on fragments dispersion of the warhead under asymmetrical multi-spots initiation [J]. Journal of Beijing Institute of Technology, 2001, 21(2): 177–179. doi: 10.3969/j.issn.1001-0645.2001.02.008
    [8] 叶小军, 韩玉, 陈庆宝. 偏心起爆战斗部速度增益的数值模拟及实验 [J]. 火炸药学报, 2009, 32(3): 29–34. doi: 10.3969/j.issn.1007-7812.2009.03.009

    YE X J, HAN Y, CHEN Q B. Numerical simulation and experiment of velocity gains on the non-central detonation warhead [J]. Chinese Journal of Explosives & Propellants, 2009, 32(3): 29–34. doi: 10.3969/j.issn.1007-7812.2009.03.009
    [9] 兰志, 杨亚东, 韩玉. 起爆方式对偏心式定向战斗部破片速度分布的影响研究 [J]. 弹箭与制导学报, 2010, 30(3): 159–161. doi: 10.3969/j.issn.1673-9728.2010.03.047

    LAN Z, YANG Y D, HAN Y. Research on the distribution of fragment velocity of a eccentric initiation warhead by initiation mode [J]. Journal of Projectiles, Rocks, Missiles and Guidance, 2010, 30(3): 159–161. doi: 10.3969/j.issn.1673-9728.2010.03.047
    [10] 张博, 李伟兵, 李文彬, 等. 偏心起爆战斗部随机破片数值仿真 [J]. 高压物理学报, 2012, 26(4): 442–448. doi: 10.11858/gywlxb.2012.04.013

    ZHANG B, LI W B, LI W B, et al. Numerical simulation of the dispersion of random fragments under asymmetrical initiation [J]. Chinese Journal of High Pressure Physics, 2012, 26(4): 442–448. doi: 10.11858/gywlxb.2012.04.013
    [11] 武敬博, 苟瑞君, 郑俊杰, 等. 六棱柱形战斗部预制破片驱动的数值模拟与试验 [J]. 火炸药学报, 2016, 39(3): 89–94.

    WU J B, GOU R J, ZHENG J J, et al. Numerical simulation and experiment of premade fragments droved by hexagonal prism shaped warhead [J]. Chinese Journal of Explosives & Propellants, 2016, 39(3): 89–94.
    [12] LI Y, WEN Y Q. Simulation on damage effectiveness of hexagonal prism aimable warhead with multi-point synchronous initiations [J]. Journal of Beijing Institute of Technology, 2014, 23(1): 1–7.
    [13] LI Y, WEN Y Q. Experiment and numerical modeling of asymmetrically initiated hexagonal prism warhead [J]. Advances in Mechanical Engineering, 2017, 9(1): 1–14.
    [14] 刘琛, 李元, 李燕华, 等. 偏心起爆方式对棱柱形定向战斗部破片飞散规律的影响 [J]. 含能材料, 2017, 25(1): 63–68. doi: 10.11943/j.issn.1006-9941.2017.01.011

    LIU C, LI Y, LI Y H, et al. Influence of eccentric initiation ways on fragment dispersion rule of prismatic aimable warhead [J]. Chinese Journal of Energetic Materical, 2017, 25(1): 63–68. doi: 10.11943/j.issn.1006-9941.2017.01.011
    [15] 南宇翔, 蒋建伟, 王树有, 等. 子弹药落地冲击响应数值模拟及实验验证 [J]. 振动与冲击, 2013, 32(3): 182–187. doi: 10.3969/j.issn.1000-3835.2013.03.036

    NAN Y X, JIANG J W, WANG S Y, et al. Numerical simulation and test for impact response of submunitions drop [J]. Journal of Vibration and Shock, 2013, 32(3): 182–187. doi: 10.3969/j.issn.1000-3835.2013.03.036
    [16] 刘彦, 黄风雷, 吴相彬. 杀爆战斗部对导弹阵地的毁伤效能研究 [J]. 北京理工大学学报, 2008, 28(5): 385–387.

    LIU Y, HUANG F L, WU X B. A study on the damage effectiveness of blast-fragmentation warhead on attacking anti-aircraft missile positions [J]. Transactions of Beijing Institute of Technology, 2008, 28(5): 385–387.
    [17] 黄正祥, 祖旭东. 终点效应[M]. 北京: 科学出版社, 2014.
    [18] 李元, 李艳华, 刘琛, 等. 爆轰波定向战斗部起爆参数研究 [J]. 含能材料, 2016, 24(9): 915–921. doi: 10.11943/j.issn.1006-9941.2016.09.017

    LI Y, LI Y H, LIU C, et al. The initiation parameter of detonation wave aiming warhead [J]. Chinese Journal of Energetic Materical, 2016, 24(9): 915–921. doi: 10.11943/j.issn.1006-9941.2016.09.017
    [19] 宋柳丽. 偏心起爆式定向战斗部破片速度分布及增益研究[D]. 南京: 南京理工大学, 2008.

    SONG L L. Study on fragment velocity distribution and enhancement of asymmetrically initiated aimable warhead [D]. Nanjing: Nanjing University of Science and Technology, 2008.
    [20] LI Y, XIONG S H, LI X G, et al. Mechanism of velocity enhancement of asymmetrically two lines initiated warhead [J]. International Journal of Impact Engineering, 2018, 122: 161–174. doi: 10.1016/j.ijimpeng.2018.07.011
  • 加载中
图(15) / 表(7)
计量
  • 文章访问数:  830
  • HTML全文浏览量:  383
  • PDF下载量:  43
出版历程
  • 收稿日期:  2021-06-30
  • 修回日期:  2021-07-06

目录

    /

    返回文章
    返回