Influence of Sequential Initiation Parameters on Damage Effectiveness of Aimed Warhead
-
摘要: 为提高定向战斗部的毁伤效能,明确序贯起爆参数对定向战斗部毁伤效能的影响,运用LS-DYNA有限元程序,采用破片速度差累加和飞散角累加的方法,研究了不同序贯起爆参数下破片初始威力参数,利用毁伤概率法,计算了不同序贯起爆参数下战斗部对地面军用车辆的毁伤效能。结果表明:起爆线个数和起爆线夹角主要影响破片速度大小,起爆延时时间主要影响破片速度大小和飞散角正负占比。相对于偏心一线和三线序贯起爆,偏心两线序贯起爆在落高为7~9 m时有7.5~25.0 m2的毁伤面积。当起爆线夹角由30°增大到120°,落高为4~8 m时,战斗部对地面军用车辆的毁伤面积降低3.9%~60.3%。序贯起爆的延时时间由零增加到0.75倍的相邻起爆点间爆轰波传播时间,落高为4~8 m时,战斗部的毁伤面积增加8.4%~87.2%。当起爆方式采用偏心两线序贯起爆,起爆线夹角取30°~60°,延时时间取0.50~0.75倍的相邻起爆点间爆轰波传播时间时,破片战斗部对地面军用车辆目标具有较好的毁伤效能。Abstract: In order to improve the damage effectiveness of aimed warhead, the influence of sequential initiation parameters on damage effectiveness of aimed warhead is studied. The initial power parameters of fragments under different sequential initiation parameters are studied by using LS-DYNA finite element program, methods of fragment velocity difference accumulation and dispersion angle accumulation. The damage probability method is used to calculate the damage effectiveness of warhead to ground military vehicles under different sequential initiation parameters. The results show that the number of initiation lines and the angle between initiation lines mainly affect the fragment velocity, and the initiation delay time mainly affects the fragment velocity and the positive and negative proportion of the dispersion angle. Compared with the eccentric one line and three lines sequential initiation, the damage area of eccentric two lines sequential initiation is 7.5–25 m2 when the drop height is 7–9 m. When the angle of initiation line increases from 30° to 120°, the damage area of warhead to ground military vehicles is reduced by 3.9%–60.3% at the falling height of 4–8 m. The delay time of sequential initiation increases from 0 to 0.75 times of the propagation time of detonation wave between adjacent initiation points, and the damage area of warhead increases by 8.4%–87.2% when the drop height is 4–8 m. In the initiation mode, by adopting eccentric two lines sequential initiation, the angle between initiation lines of 30°–60°, and the delay time of 0.50–0.75 times of the detonation wave propagation time between adjacent initiation points, the fragment warhead has good damage efficiency to the ground military vehicle target.
-
Key words:
- aimed warhead /
- sequential initiation /
- damage effectiveness /
- damage area /
- fragment
-
表 1 Comp. B炸药参数
Table 1. Parameters of Comp. B explosive
$\,\rho{_0}$/(g·cm−3) pCJ/GPa DCJ/(m·s−1) A/GPa B/GPa R1 R2 $\omega $ 1.717 29.5 7890 524.23 7.678 4.2 1.1 0.34 表 2 空气的材料参数
Table 2. Parameters of air
$\,\rho{_0}$/(kg·m−3) C1 C2 C3 C4 C5 1.29 0 0 0 0.4 0.4 表 3 衬筒、外壳及端盖的材料参数
Table 3. Parameters of liner, shell and end cap
Component $\,\rho{_0}$/(g·cm−3) Elastic modulus/GPa Poisson’s ratio Yield limit/GPa n Liner 2.70 72 0.33 0.310 0.7 Shell, end cap 7.83 210 0.30 0.355 1.0 表 4 破片的材料参数
Table 4. Parameters of fragment
$\,\rho{_0}$/(g·cm−3) Young’s modulus/GPa Poisson’s ratio 17.51 117 0.22 表 5 不同起爆线个数条件下破片的性能参数
Table 5. Fragment performance parameters under different numbers of initiation lines
Initiation line vmax/(m·s−1) Velocity gain/% $\delta $+/% $\delta $−/% Central single point 2023.6 0 20.1 79.9 Sequential one line 2234.7 10.4 23.4 76.6 Sequential two lines 2297.9 13.6 21.6 78.4 Sequential three lines 2315.7 14.4 21.4 78.6 表 6 不同起爆线夹角的破片性能参数
Table 6. The fragment performance parameters under different initiation line angles
β/(°) vmax/(m·s−1) Velocity gain/% $\delta $+/% $\delta $−/% 30 2265.2 11.9 22.9 77.1 45 2292.8 13.3 22.1 77.9 60 2297.9 13.6 21.6 78.4 90 2286.3 13.0 22.6 77.4 120 2218.4 9.6 23.2 76.8 表 7 不同起爆线延时时间的破片性能参数
Table 7. Fragment performance parameters under different initiation delay time
T vmax/(m·s−1) Velocity gain/% $\delta $+/% $\delta $−/% 0 2295.8 13.5 50.5 49.5 0.25t 2346.7 16.0 25.4 74.6 0.50t 2297.9 13.6 21.6 78.4 0.75t 2221.3 9.8 19.6 80.4 -
[1] 崔瀚, 张国新. 定向战斗部研究现状及展望 [J]. 飞航导弹, 2019(3): 84–89.CUI H, ZHANG G X. The status and prospect of aimed warhead [J]. Aerodynamic Missile Journal, 2019(3): 84–89. [2] LI W, HUANG G Y, FENG S S. Effect of eccentric edge initiation on the fragment velocity distribution of a cylindrical casing filled with charge [J]. International Journal of Impact Engineering, 2015, 80: 107–115. [3] WANG L, HAN F, ZHOU Q. The projection angles of fragments from a cylindrical casing filled with charge initiated at one end [J]. International Journal of Impact Engineering, 2017, 103: 138–148. doi: 10.1016/j.ijimpeng.2017.01.012 [4] HUANG G Y, LI W, FENG S S. Fragment velocity distribution of cylindrical rings under eccentric point initiation [J]. Propellants, Explosives, Pyrotechnics, 2015, 40: 215–220. doi: 10.1002/prep.201400180 [5] WANG M, LU F Y, LI X Y, et al. A formula for calculating the velocities of fragments from velocity enhanced warhead [J]. Propellants, Explosives, Pyrotechnics, 2013, 38(2): 232–237. doi: 10.1002/prep.201200025 [6] LI Y, LI Y H, WEN Y Q. Radial distribution of fragment velocity of asymmetrically initiated warhead [J]. International Journal of Impact Engineering, 2017, 99: 39–47. doi: 10.1016/j.ijimpeng.2016.09.007 [7] 王树山, 马晓飞, 隋树元, 等. 偏心多点起爆战斗部破片飞散实验研究 [J]. 北京理工大学学报, 2001, 21(2): 177–179. doi: 10.3969/j.issn.1001-0645.2001.02.008WANG S S, MA X F, SUI S Y, et al. Experimental research on fragments dispersion of the warhead under asymmetrical multi-spots initiation [J]. Journal of Beijing Institute of Technology, 2001, 21(2): 177–179. doi: 10.3969/j.issn.1001-0645.2001.02.008 [8] 叶小军, 韩玉, 陈庆宝. 偏心起爆战斗部速度增益的数值模拟及实验 [J]. 火炸药学报, 2009, 32(3): 29–34. doi: 10.3969/j.issn.1007-7812.2009.03.009YE X J, HAN Y, CHEN Q B. Numerical simulation and experiment of velocity gains on the non-central detonation warhead [J]. Chinese Journal of Explosives & Propellants, 2009, 32(3): 29–34. doi: 10.3969/j.issn.1007-7812.2009.03.009 [9] 兰志, 杨亚东, 韩玉. 起爆方式对偏心式定向战斗部破片速度分布的影响研究 [J]. 弹箭与制导学报, 2010, 30(3): 159–161. doi: 10.3969/j.issn.1673-9728.2010.03.047LAN Z, YANG Y D, HAN Y. Research on the distribution of fragment velocity of a eccentric initiation warhead by initiation mode [J]. Journal of Projectiles, Rocks, Missiles and Guidance, 2010, 30(3): 159–161. doi: 10.3969/j.issn.1673-9728.2010.03.047 [10] 张博, 李伟兵, 李文彬, 等. 偏心起爆战斗部随机破片数值仿真 [J]. 高压物理学报, 2012, 26(4): 442–448. doi: 10.11858/gywlxb.2012.04.013ZHANG B, LI W B, LI W B, et al. Numerical simulation of the dispersion of random fragments under asymmetrical initiation [J]. Chinese Journal of High Pressure Physics, 2012, 26(4): 442–448. doi: 10.11858/gywlxb.2012.04.013 [11] 武敬博, 苟瑞君, 郑俊杰, 等. 六棱柱形战斗部预制破片驱动的数值模拟与试验 [J]. 火炸药学报, 2016, 39(3): 89–94.WU J B, GOU R J, ZHENG J J, et al. Numerical simulation and experiment of premade fragments droved by hexagonal prism shaped warhead [J]. Chinese Journal of Explosives & Propellants, 2016, 39(3): 89–94. [12] LI Y, WEN Y Q. Simulation on damage effectiveness of hexagonal prism aimable warhead with multi-point synchronous initiations [J]. Journal of Beijing Institute of Technology, 2014, 23(1): 1–7. [13] LI Y, WEN Y Q. Experiment and numerical modeling of asymmetrically initiated hexagonal prism warhead [J]. Advances in Mechanical Engineering, 2017, 9(1): 1–14. [14] 刘琛, 李元, 李燕华, 等. 偏心起爆方式对棱柱形定向战斗部破片飞散规律的影响 [J]. 含能材料, 2017, 25(1): 63–68. doi: 10.11943/j.issn.1006-9941.2017.01.011LIU C, LI Y, LI Y H, et al. Influence of eccentric initiation ways on fragment dispersion rule of prismatic aimable warhead [J]. Chinese Journal of Energetic Materical, 2017, 25(1): 63–68. doi: 10.11943/j.issn.1006-9941.2017.01.011 [15] 南宇翔, 蒋建伟, 王树有, 等. 子弹药落地冲击响应数值模拟及实验验证 [J]. 振动与冲击, 2013, 32(3): 182–187. doi: 10.3969/j.issn.1000-3835.2013.03.036NAN Y X, JIANG J W, WANG S Y, et al. Numerical simulation and test for impact response of submunitions drop [J]. Journal of Vibration and Shock, 2013, 32(3): 182–187. doi: 10.3969/j.issn.1000-3835.2013.03.036 [16] 刘彦, 黄风雷, 吴相彬. 杀爆战斗部对导弹阵地的毁伤效能研究 [J]. 北京理工大学学报, 2008, 28(5): 385–387.LIU Y, HUANG F L, WU X B. A study on the damage effectiveness of blast-fragmentation warhead on attacking anti-aircraft missile positions [J]. Transactions of Beijing Institute of Technology, 2008, 28(5): 385–387. [17] 黄正祥, 祖旭东. 终点效应[M]. 北京: 科学出版社, 2014. [18] 李元, 李艳华, 刘琛, 等. 爆轰波定向战斗部起爆参数研究 [J]. 含能材料, 2016, 24(9): 915–921. doi: 10.11943/j.issn.1006-9941.2016.09.017LI Y, LI Y H, LIU C, et al. The initiation parameter of detonation wave aiming warhead [J]. Chinese Journal of Energetic Materical, 2016, 24(9): 915–921. doi: 10.11943/j.issn.1006-9941.2016.09.017 [19] 宋柳丽. 偏心起爆式定向战斗部破片速度分布及增益研究[D]. 南京: 南京理工大学, 2008.SONG L L. Study on fragment velocity distribution and enhancement of asymmetrically initiated aimable warhead [D]. Nanjing: Nanjing University of Science and Technology, 2008. [20] LI Y, XIONG S H, LI X G, et al. Mechanism of velocity enhancement of asymmetrically two lines initiated warhead [J]. International Journal of Impact Engineering, 2018, 122: 161–174. doi: 10.1016/j.ijimpeng.2018.07.011