Parameter Optimization of Presplitting Blasting Based on Model Test
-
摘要: 为了有效地降低预裂爆破振动对边坡岩体和周边建构筑物的扰动,除了关注预裂缝的减振效应外,还需对预裂孔本身的爆破参数和起爆方式进行优化。为此,采用正交试验法,选用C30混凝土为爆破对象的相似模拟材料,开展预裂孔爆破成缝过程的相似模型试验,选取不耦合系数、延期时间、最大单响药量3个因素,每个因素设置4个水平,以有效半孔率、预裂缝宽度和原岩损伤率为评价指标,通过极差与方差计算分析各因素对评价指标的敏感度,确定了本次模型试验达到最佳爆破效果的预裂孔爆破参数:不耦合系数为1.33,延期时间为12 ms,最大单响药量为1.8 g。研究结果可为现场预裂孔爆破参数选择和精确延期时间设计提供指导。Abstract: In order to effectively reduce the disturbance derived from the vibration of the presplitting blasting in the slope rock mass and surrounding structures, it is important not only to pay attention to the vibration damping effect of the presplitting, but also to optimize the blasting parameters and initiation modes of the presplitting hole. The study adopts the orthogonal experimental method, which selects the C30 concrete as the similar simulation material of the blasting object to carry out the similar model test of the blasting process with presplitting hole. In this model test, three factors are considered as the non-coupling coefficient, which are delay time, and maximum single-shot charge, and four levels are set for each factor, taking effective half porosity, pre-fracture width and original rock damage rate as evaluation indicators. After the analysis of the sensitivity of each factor to evaluation indicators through range and variance calculations, the best blasting effect with the blasting parameters of the presplitting hole are finally achieved in this model test: non-coupling coefficient is 1.33, delay time is 12 ms, and maximum single-shot charge is 1.8 g. The research results provide guidance for the design of the parameters of on-site blasting with presplitting hole and precise delay time.
-
表 1 正交试验因素水平
Table 1. Factors and levels for orthogonal tests
Level Factors A B/ms C/g D 1 1.33 8 1.8 1 2 1.67 10 3.6 2 3 2.00 12 5.4 3 4 3.00 15 3.6* 4 表 2 相似材料模拟试验的正交设计
Table 2. Orthogonal test design of the simulation tests with similar material
Test No. Factors A B/ms C/g D 1 1.33 8 1.8 1 2 1.33 10 3.6 2 3 1.33 12 5.4 3 4 1.33 15 3.6* 4 5 1.67 8 3.6 4 6 1.67 10 1.8 3 7 1.67 12 3.6* 2 8 1.67 15 5.4 1 9 2.00 8 5.4 2 10 2.00 10 3.6* 1 11 2.00 12 1.8 4 12 2.00 15 3.6 3 13 3.00 8 3.6* 3 14 3.00 10 5.4 4 15 3.00 12 3.6 1 16 3.00 15 1.8 2 表 3 爆破效果统计
Table 3. Statistics of blasting effect
Test No. Evaluating indicator Test No. Evaluating indicator δ/% d/mm η/% δ/% d/mm η/% 1 45 51 14.0 9 65 16 24.8 2 48 63 14.5 10 76 15 21.4 3 51 80 19.3 11 70 10 10.0 4 41 54 13.1 12 65 12 10.6 5 56 41 19.4 13 76 12 12.3 6 30 45 14.0 14 90 21 13.5 7 78 62 16.2 15 87 17 12.8 8 62 51 19.8 16 76 15 12.0 表 4 极差分析
Table 4. Range analysis
Range analysis
indexFactors Range analysis of δ Range analysis of d Range analysis of η A B C D A B C D A B C D K1 185.0 242.0 231.0 270.0 248.0 120.0 121.0 134.0 60.9 70.5 50.0 68.0 K2 226.0 244.0 266.0 277.0 199.0 144.0 133.0 156.0 69.4 63.4 57.3 67.5 K3 286.0 286.0 268.0 232.0 53.0 169.0 168.0 149.0 66.8 58.3 77.4 56.2 K4 339.0 264.0 271.0 257.0 65.0 132.0 143.0 126.0 50.6 55.5 63.0 56.0 k1 46.3 60.5 57.8 67.5 62.0 30.0 30.3 33.5 15.2 17.6 12.5 17.0 k2 56.5 61.0 66.5 69.3 49.8 36.0 33.3 39.0 17.4 15.8 14.3 16.9 k3 71.5 71.5 67.0 58.0 13.3 42.3 42.0 37.3 16.7 14.6 19.4 14.1 k4 84.8 66.0 67.8 64.3 16.3 33.0 35.8 31.5 12.7 13.9 15.8 14.0 R 38.5 11.0 9.3 11.3 33.5 12.3 11.8 7.5 4.7 3.8 6.9 3.0 表 5 方差分析结果
Table 5. Results of variance analysis
Factors Variance analysis of δ Variance analysis of d Variance analysis of η QT μ Si F QT μ Si F QT μ Si F A 3423.5 3 1141.2 11.60 7083.2 3 2361.1 50.35 52.2 3 17.4 1.54 B 317.0 3 105.7 1.08 328.7 3 109.6 2.34 32.5 3 10.8 0.96 C 261.3 2 130.7 1.33 286.7 2 143.3 3.06 97.0 2 48.5 4.28 Error 294.5 3 98.2 140.7 3 46.9 34.0 3 11.3 -
[1] MELNIKOV N V. Charge construction influence on explosion operations efficiency [C]//Reports of the Science Symposium on Drilling, Explosives, Explosion Operations and Study of Physical and Mechanical Properties of Rocks. Rolla, USA: Gosgortekhizdat, 1962: 35−38. [2] FOURNEY W L, BARKER D B, HOLLOWAY D C. Model studies ofexplosive well stimulation techniques [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1981, 18(2): 113–127. doi: 10.1016/0148-9062(81)90737-3 [3] PALROY P, SINGH R B. Air-decking principle and its applications inproduction and presplit blasting [J]. CIM Bulletin, 2001, 94(1): 60–64. [4] 邓珂, 陈明, 卢文波, 等. 地应力对坝肩槽预裂爆破成缝的影响研究 [J]. 岩土力学, 2019, 40(3): 1121–1128.DENG K, CHEN M, LU W B, et al. Investigation of influence of in-situ stress on presplitting induced fracture in abutment slot [J]. Rock and Soil Mechanics, 2019, 40(3): 1121–1128. [5] 朱强, 陈明, 郑炳旭, 等. 空气间隔装药预裂爆破岩体损伤分布特征及控制技术 [J]. 岩石力学与工程学报, 2016, 35(Suppl 1): 2758–2765.ZHU Q, CHEN M, ZHENG B X, et al. Distribution and control technology of rock damage induced by air-deck charge presplitting blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(Suppl 1): 2758–2765. [6] HE L H, WANG J G, XIAO J Q, et al. Pre-splitting blasting vibration reduction effect research on weak rock mass [J]. Disaster Advances, 2013, 6: 338–343. [7] 杨仁树, 苏洪. 爆炸荷载下含预裂缝的裂纹扩展实验研究 [J]. 煤炭学报, 2019, 44(2): 482–489.YANG R S, SU H. Experimental study on crack propagation with pre-crack under explosion load [J]. Journal of China Coal Society, 2019, 44(2): 482–489. [8] 璩世杰, 刘际飞. 节理角度对预裂爆破成缝效果的影响研究 [J]. 岩土力学, 2015, 36(1): 189–194, 204.QU S J, LIU J F. Numerical analysis of joint angle effect on cracking with presplit blasting [J]. Rock and Soil Mechanics, 2015, 36(1): 189–194, 204. [9] 陈俊桦, 张家生, 李新平. 基于岩石爆破损伤理论的预裂爆破参数研究及应用 [J]. 岩土力学, 2016, 37(5): 1441–1450.CHEN J H, ZHANG J S, LI X P. Study of presplitting blasting parameters and its application based on rock blasting-induced damage theory [J]. Rock and Soil Mechanics, 2016, 37(5): 1441–1450. [10] MA L, LI K M, XIAO S S, et al. Research on effects of blast casting vibration and vibration absorption of presplitting blasting in open cast mine [J]. Shock and Vibration, 2016: 4091732. [11] 饶宇, 夏元友, 胡英国, 等. 预裂缝对爆破振动频谱分布特征的影响 [J]. 振动与冲击, 2017, 36(7): 191–198.RAO Y, XIA Y Y, HU Y G, et al. Influence of pre-splitting crack on spectrum distribution characteristics of blasting vibration [J]. Journal of Vibration and Shock, 2017, 36(7): 191–198. [12] 严鹏, 邹玉君, 卢文波, 等. 基于爆破振动监测的岩石边坡开挖损伤区预测 [J]. 岩石力学与工程学报, 2016, 35(3): 538–548.YAN P, ZOU Y J, LU W B, et al. Predicting the damage zone of rock slopes under blasting excavation based on vibration monitoring [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3): 538–548. [13] XIAO S S, WANG H S, DONG G W, et al. A preliminary study on the design method for large-diameter deep-hole presplit blasting and its vibration-isolation effect [J]. Shock and Vibration, 2019: 2038578. [14] 徐颖, 孟益平, 程玉生. 装药不耦合系数对爆破裂纹控制的试验研究 [J]. 岩石力学与工程学报, 2002(12): 1843–1847. doi: 10.3321/j.issn:1000-6915.2002.12.020XU Y, MENG Y P, CHEN Y S. Study on control of blast crack by decoupling charge index [J]. Chinese Journal of Rock Mechanics and Engineering, 2002(12): 1843–1847. doi: 10.3321/j.issn:1000-6915.2002.12.020 [15] 何理, 钟冬望. 微差爆破地震波沿高程传播特性的试验研究 [J]. 化工矿物与加工, 2015, 44(5): 36–40.HE L, ZHONG D W. Experimental study on propagation characteristics of millisecond blasting seismic waves along elevation [J]. Industrial Minerals & Processing, 2015, 44(5): 36–40. [16] 司剑峰, 钟冬望, 黄小武. 钻孔爆破孔间最佳延时时间模型试验研究 [J]. 金属矿山, 2015, 468(6): 19–23. doi: 10.3969/j.issn.1001-1250.2015.06.005SI J F, ZHONG D W, HUANG X W. Experimental model of the optimal delay time in drilling blasting [J]. Metal Mine, 2015, 468(6): 19–23. doi: 10.3969/j.issn.1001-1250.2015.06.005