Crashworthiness and Energy Absorption Properties of Polycrystal-Like Lattice Structures Strengthened by Interfaces
-
摘要: 3D打印技术有力促进了金属点阵材料的发展,而碰撞吸能是点阵材料的重要应用领域之一,为此综述了课题组近期在界面增强点阵吸能方面的研究。受金属材料微观变形机理中晶界强化机制的启发,通过在点阵结构中引入晶界和孪晶界等宏观界面构型,构造了含多个界面的多晶点阵结构,研究其耐撞吸能性能。具体而言,构造了胞元构型为简单立方、面心立方和三斜晶系的不同多晶点阵结构试件,通过一系列参数化有限元模拟,并结合增材制造技术开展验证性实验,研究了晶粒尺寸(晶界密度)、界面两侧晶向差、界面取向角度等参数对结构压溃变形模式和吸能性能的影响,发现对称性强的界面(如孪晶界)可以增强点阵结构的吸能性能。进一步研究发现,描述材料微观强化机理的Hall-Petch关系仍然适用于所提宏观多晶点阵结构。该研究可为发展新型轻质点阵吸能结构提供一定的参考。Abstract: Benefitted by the 3D printing technologies, metallic lattice materials have gained remarkable development. Energy absorption is one of the most important applications for lattice materials. This paper presents our recent work on the energy absorption of polycrystal-like lattice materials. Inspired by the grain boundary strengthening mechanisms of polycrystalline metals, the polycrystalline-like macroscopic lattice structures were designed and constructed by introducing the macro grain boundaries or twin boundaries. Attention will be paid to the crashworthiness and energy absorption properties of the new structures. Specifically, three types of polycrystal-like lattice structures with the simple cubic lattice, the face-centered cubic lattice, and the triclinic lattice cell configurations were created. A parametric study was carried out using the finite element simulations and the quasi-static compression tests based on additive manufacturing technology. The influences of the grain size (i.e., grain boundary density), the grain boundary mis-orientation angle, the interface orientation angle on the deformation modes and the energy absorption properties were investigated. It is found that the interfaces with high symmetry can mostly enhance the energy absorption capability of the lattice structures. Further study demonstrates that the Hall-Petch relationship that was usually used to describe the grain boundary strengthening mechanism of polycrystalline materials can also be applied to the macro polycrystal-like lattice structures. This paper is expected to provide guides for the development of new lightweight energy absorption structures.
-
Key words:
- lattice structures /
- energy absorption /
- deformation mode /
- grain boundary /
- twin boundary
-
表 1 SC点阵结构的有限元模拟与理论预测结果对比[24]
Table 1. Comparison of the simulation results with the theoretical predictions for SC lattice[24]
Lattice orientation/(°) Counted cell number Energy absorption/mJ Relative error/% Theoretical Simulation 0 90 271.433 260.616 4.151 15 68 289.487 261.446 10.725 30 68 327.040 368.344 11.213 45 60 255.910 269.420 5.014 -
[1] 卢天健, 何德坪, 陈常青, 等. 超轻多孔金属材料的多功能特性及应用 [J]. 力学进展, 2006, 36(4): 517–535.LU T J, HE D P, CHEN C Q, et al. The multi-functionality of ultra-light porous metals and their applications [J]. Advances in Mechanics, 2006, 36(4): 517–535. [2] 吴林志, 泮世东. 夹芯结构的设计及制备现状 [J]. 中国材料进展, 2009, 28(4): 40–45.WU L Z, PAN S D. Survey of design and manufacturing of sandwich structures [J]. Materials China, 2009, 28(4): 40–45. [3] HOU A, GRAMOL K. Design and fabrication of CFRP interstage attach fitting for launch vehicles [J]. Journal of Aerospace Engineering, 1999, 12(3): 83–91. doi: 10.1061/(ASCE)0893-1321(1999)12:3(83) [4] HA N S, LU G X. A review of recent research on bio-inspired structures and materials for energy absorption applications [J]. Composites Part B: Engineering, 2020, 181: 107496. doi: 10.1016/j.compositesb.2019.107496 [5] WEI K, YANG Q D, YANG X J, et al. Mechanical analysis and modeling of metallic lattice sandwich additively fabricated by selective laser melting [J]. Thin-Walled Structures, 2020, 146: 106189. doi: 10.1016/j.tws.2019.106189 [6] 方岱宁, 郭海成, SOH A K, 等. 轻质点阵材料的力学行为分析[C]//首届全国航空航天领域中的力学问题学术研讨会论文集(下册). 北京: 中国力学学会, 2004. [7] 易长炎, 柏龙, 陈晓红, 等. 金属三维点阵结构拓扑构型研究及应用现状综述 [J]. 功能材料, 2017, 48(10): 10055–10065.YI C Y, BAI L, CHEN X H, et al. Review on the metal three-dimensional lattice topology configurations research and application status [J]. Journal of Functional Materials, 2017, 48(10): 10055–10065. [8] 范华林, 杨卫. 轻质高强点阵材料及其力学性能研究进展 [J]. 力学进展, 2007, 37(1): 99–112.FAN H L, YANG W. Development of lattice materials with high specific stiffness and strength [J]. Advances in Mechanics, 2007, 37(1): 99–112. [9] AJDARI A, NAYEB-HASHEMI H, VAZIRI A. Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures [J]. International Journal of Solids and Structures, 2011, 48(3/4): 506–516. doi: 10.1016/j.ijsolstr.2010.10.018 [10] ZHANG P, TOMAN J, YU Y Q, et al. Efficient design-optimization of variable-density hexagonal cellular structure by additive manufacturing: theory and validation [J]. Journal of Manufacturing Science and Engineering, 2015, 137(2): 021004. doi: 10.1115/1.4028724 [11] ZHENG J, QIN Q H, WANG T J. Impact plastic crushing and design of density-graded cellular materials [J]. Mechanics of Materials, 2016, 94: 66–78. doi: 10.1016/j.mechmat.2015.11.014 [12] SHEN C J, LU G, YU T X. Dynamic behavior of graded honeycombs: a finite element study [J]. Composite Structures, 2013, 98: 282–293. doi: 10.1016/j.compstruct.2012.11.002 [13] WU H X, LIU Y, ZHANG X C. In-plane crushing behavior and energy absorption design of composite honeycombs [J]. Acta Mechanica Sinica, 2018, 34(6): 1108–1123. doi: 10.1007/s10409-018-0798-4 [14] 殷莎. 基于Ashby设计思想的新型点阵结构——制备工艺与力学性能表征[D]. 哈尔滨: 哈尔滨工业大学, 2013. [15] YIN S, CHEN H Y, LI J N, et al. Effects of architecture level on mechanical properties of hierarchical lattice materials [J]. International Journal of Mechanical Sciences, 2019, 157/158: 282–292. [16] LI Z, YANG F. Grain rotations during uniaxial deformation of gradient nano-grained metals using crystal plasticity finite element simulations [J]. Extreme Mechanics Letters, 2017, 16: 41–48. doi: 10.1016/j.eml.2017.09.003 [17] PHAM M S, LIU C, TODD I, et al. Damage-tolerant architected materials inspired by crystal microstructure [J]. Nature, 2019, 565: 305–311. doi: 10.1038/s41586-018-0850-3 [18] YIN S, GUO W H, WANG H T, et al. Strong and tough bioinspired additive-manufactured dual-phase mechanical metamaterial composites [J]. Journal of the Mechanics and Physics of Solids, 2021, 149: 104341. doi: 10.1016/j.jmps.2021.104341 [19] XIAO L J, XU X, SONG W D, et al. A multi-cell hybrid approach to elevate the energy absorption of micro-lattice materials [J]. Materials, 2020, 13(18): 4083. doi: 10.3390/ma13184083 [20] LU Z H, YAN W Y, YAN P F, et al. A novel precipitate-type architected metamaterial strengthened via orowan bypass-like mechanism [J]. Applied Science, 2020, 10(21): 7525. doi: 10.3390/app10217525 [21] MA C P, ZHANG Z W, LUCE B, et al. Accelerated design and characterization of non-uniform cellular materials via a machine-learning based framework [J]. NPJ Computational Materials, 2020, 6(1): 1–8. doi: 10.1038/s41524-019-0267-z [22] VANGELATOS Z, KOMVOPOULOS K, GRIGOROPOULOS C P. Regulating the mechanical behavior of metamaterial microlattices by tactical structure modification [J]. Journal of the Mechanics and Physics of Solids, 2020, 144: 104112. doi: 10.1016/j.jmps.2020.104112 [23] WU W W, KIM S, RAMAZANI A, et al. Twin mechanical metamaterials [EB/OL]. (2021-01-04)[2021-06-21]. https://arxiv.org/-abs/2101.00927. [24] BIAN Y J, LI P H, YANG F, et al. Deformation mode and energy absorption of polycrystal-inspired square-cell lattice structures [J]. Applied Mathematics and Mechanics, 2020, 41(10): 1561–1582. doi: 10.1007/s10483-020-2648-8 [25] LI W W, FAN H L, BIAN Y J, et al. Plastic deformation and energy absorption of polycrystalline-like lattice structures [J]. Materials & Design, 2021, 198(1): 109321. [26] BIAN Y J, YANG F, LI P H, et al. Energy absorption properties of macro triclinic lattice structures with twin boundaries inspired by microstructure of feldspar twinning crystals [J]. Composite Structures, 2021, 271: 114103. doi: 10.1016/j.compstruct.2021.114103 [27] QIU X M, ZHANG J, YU T X. Collapse of periodic planar lattices under uniaxial compression, part Ⅰ: quasi-static strength predicted by limit analysis [J]. International Journal of Impact Engineering, 2009, 36(10/11): 1223–1230. doi: 10.1016/j.ijimpeng.2009.05.011