Numerical Analysis of Response of Fiber Reinforced Thermoplastic and Metal Laminates Subjected to Explosion in Cabin
-
摘要: 热塑性纤维金属层合板作为具备优良抗冲击潜能的复合材料,在舰船防护领域受到广泛关注。以热塑性纤维金属层合板为研究对象,基于封闭空间内爆炸载荷作用下层合板动态响应试验数据,以及通过代表体积元(representative volume element, RVE)方法计算得到的纤维板材料参数,开展了热塑性纤维增强金属层合板的数值模拟研究。通过试验结果与数值模拟结果的对比,验证了数值模拟方法的有效性,进一步分析了层合板的响应规律。所采用的热塑性纤维金属层合板舱内爆炸响应数值模拟方法对研究层合板抗冲击性能具有一定的借鉴意义,为相关研究的进一步开展提供了思路。Abstract: Fiber reinforced thermoplastic and metal laminates have received wide attention in the field of naval protection, due to the excellent impact resistance performance. Numerical study on the fiber reinforced thermoplastic and metal laminate was carried out, based on the dynamic response test data of the laminate subjected to blast load in a confined space and the mechanical performance parameters of fiber reinforced thermoplastic calculated by the representative volume element (RVE) method. The validity of the numerical method was verified by comparing the test results with simulation one, and the response law of the laminate was further analyzed by the simulation results. The numerical simulation method of the fiber-reinforced thermoplastic and metal laminates adopted in this paper has a certain significance for the study of the impact resistance of laminates, and provides a feasible idea for the further development of related research.
-
表 1 试验工况
Table 1. Test conditions
Specimen No. m/g d/mm W/g D/mm h/mm A5G4-1 1 108 6.5 5 15.0 17.8 A5G4-2 1 108 6.5 10 20.0 20.0 A5G4-3 1 108 6.5 20 25.0 25.6 A5G4-4 1 108 6.5 30 30.0 26.7 A5G4-5 1 108 6.5 40 30.0 35.6 A5G4-6 1 108 6.5 50 35.0 32.7 表 2 层合板试验变形数据
Table 2. Deformation of the laminate
Specimen No. d/mm W/g δmax/mm A5G4-1 6.5 5 9.3 A5G4-2 6.5 10 13.5 A5G4-3 6.5 20 18.9 A5G4-4 6.5 30 26.2 A5G4-5 6.5 40 32.8 A5G4-6 6.5 50 39.7 表 3 药量递增下截面破坏形式变化
Table 3. Damage mode under different charge (sectional view)
Specimen No. Cross-sectional scan image Deformation characteristics A5G4-2 Slight delamination occurred A5G4-3 Initial damage began A5G4-4 Fiber layers broken and failed, obvious delamination
at the center and the boundaryA5G4-5 All fiber layers broken, delamination appears on
each metal-fiber interfaceA5G4-6 Metal layers has obvious protrusions and delamination 表 4 复合材料内部纤维的几何参数
Table 4. Fiber geometrical parameters of the laminate
Weaving form Fiber diameter/μm Fiber bundle
density/texLong axis of fiber
section/μmShort axis of fiber
section/μm1/7 satin 6.0 68 110 500 表 5 复合材料的组成及其力学性能参数
Table 5. Composition of the laminate and their mechanical parameters
Material $\rho$f/(g∙cm−3) E/GPa μ w/% E-glass fiber 2.45 71.00 0.2 60 PP 0.91 0.89 0.4 40 表 6 复合材料性能参数
Table 6. Mechanical parameters of the laminate
E11/GPa E22/GPa E33/GPa G12/GPa G13/GPa G23/GPa μ12 μ13 μ32 13.60 13.60 3.12 0.78 0.82 0.82 0.05 0.54 0.12 表 7 二维载荷计算中的TNT参数
Table 7. TNT parameters for two-dimensional load calculation model
CJ detonation parameters JWL state equation parameters $\,\rho$C/(g∙cm−3) DC-J/(m∙s−1) pC-J/GPa EC/(MJ∙m−3) A/GPa B/GPa R1 R2 $\omega $ 1.55 6 487 18.39 5 235 373.77 3.75 4.15 0.90 0.35 表 8 铝合金真实应力-应变输入参数
Table 8. True stress-strain parameters of aluminum alloys
Plastic strain/% Stress/MPa Plastic strain/% Stress/MPa Plastic strain/% Stress/MPa 0 110.93 4.137 182.47 12.767 241.73 0.003 111.12 5.028 192.73 13.778 245.02 0.188 116.92 5.846 200.54 15.196 250.26 0.546 124.20 6.727 209.26 16.371 253.58 0.958 133.40 7.505 214.37 18.246 258.65 1.506 143.87 8.356 220.41 18.662 259.99 2.058 154.52 10.237 230.85 3.090 169.07 11.604 236.80 表 9 纤维板材料参数
Table 9. Mechanical parameters of fiber reinforced laminate
Equation of state Strength equation E11/GPa E22/GPa E33/GPa μ12 μ23 μ31 G/MPa 13.6 13.6 3.12 0.05 0.54 0.12 820 Failure criterion Post-failure mode σ11/MPa σ22/MPa σ33/MPa τ12/MPa τ23/MPa τ31/MPa Residual shear stiffness 550 550 550 220 220 220 0.2 Directional failure mode 11 22 33 12 23 31 11 only 22 only 33 only 12 and 11 only 23 and 11 only 31 and 11 only 表 10 夹持边界与固支边界对比
Table 10. Comparison of clamping and fixed boundary
Final deformation/mm Final deformation of the
clamping boundary/mmFinal deformation of the
fixed boundary/mmBoundary influence/% 13.5 12.8 9.2 28.1 -
[1] CARRILLO J G, CANTWELL W J. Mechanical properties of a novel fiber-metal laminate based on a polypropylene composite [J]. Mechanics of Materials, 2009, 41(7): 828–838. doi: 10.1016/j.mechmat.2009.03.002 [2] VLOT A. Impact loading on fibre metal laminates [J]. International Journal of Impact Engineering, 1996, 18(3): 291–307. doi: 10.1016/0734-743X(96)89050-6 [3] VLOT A, KRULL M. Impact damage resistance of various fibre metal laminates [J]. Journal de Physique Ⅳ, 1997, 7(C3): 1045–1050. [4] KIM H K, PARK E T, SONG W J, et al. Experimental and numerical investigation of the high-velocity impact resistance of fiber metal laminates and Al 6061-T6 by using electromagnetic launcher [J]. Journal of Mechanical Science and Technology, 2019, 33(3): 1219–1229. doi: 10.1007/s12206-019-0222-4 [5] NAM H W, HWANG W, HAN K S. Stacking sequence design of fiber-metal laminate for maximum strength [J]. Journal of Composite Materials, 2001, 35(18): 1654–1683. doi: 10.1106/7NV4-5J5R-XIUJ-PVXT [6] MANIKANDAN P, CHAI G B. A layer-wise behavioral study of metal based interply hybrid composites under low velocity impact load [J]. Composite Structures, 2014, 117: 17–31. doi: 10.1016/j.compstruct.2014.06.010 [7] ZHANG X, MA Q Y, DAI Y, et al. Effects of surface treatments and bonding types on the interfacial behavior of fiber metal laminate based on magnesium alloy [J]. Applied Surface Science, 2018, 427: 897–906. doi: 10.1016/j.apsusc.2017.09.024 [8] MAJZOOBI G H, MORSHEDI H, FARHADI K. The effect of aluminum and titanium sequence on ballistic limit of bi-metal 2/1 FMLs [J]. Thin-Walled Structures, 2018, 122: 1–7. doi: 10.1016/j.tws.2017.10.006 [9] PÄRNÄNEN T, ALDERLIESTEN R, RANS C, et al. Applicability of AZ31B-H24 magnesium in fibre metal laminates-an experimental impact research [J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(9): 1578–1586. doi: 10.1016/j.compositesa.2012.04.008 [10] CORTES P, CATWELL W J. The impact properties of high-temperature fiber-metal laminates [J]. Journal of Composite Materials, 2007, 41(5): 613–632. doi: 10.1177/0021998306065291 [11] ZHANG D L, ZHANG X Y, LUO Y P, et al. Experimental study on drop-weight impact response of basalt fiber aluminum laminates (BFMLs) [J]. Advances in Materials Science and Engineering, 2018: 1478951. [12] SEYED YAGHOUBI A, LIAW B. Thickness influence on ballistic impact behaviors of GLARE 5 fiber-metal laminated beams: experimental and numerical studies [J]. Composite Structures, 2012, 94(8): 2585–2598. doi: 10.1016/j.compstruct.2012.03.004 [13] SEYED YAGHOUBI A, LIAW B. Experimental and numerical investigations of stacking sequence effect on glare 5 fml plates subjected to ballistic impact [C]//2012 International Mechanical Engineering Congress and Exposition. Houston, Texas: American Society of Mechanical Engineers, 2012. [14] SEYED YAGHOUBI A, LIAW B. Effect of lay-up orientation on ballistic impact behaviors of GLARE 5 FML beams [J]. International Journal of Impact Engineering, 2013, 54: 138–148. doi: 10.1016/j.ijimpeng.2012.10.007 [15] SEYED YAGHOUBI A, LIAW B. An experimental and numerical investigation of thickness effect on cross-ply glare 5 fml plates subjected to ballistic impact [C]//2012 International Mechanical Engineering Congress and Exposition. Houston, Texas: American Society of Mechanical Engineers, 2012. [16] SEYED YAGHOUBI A, LIAW B. Influences of thickness and stacking sequence on ballistic impact behaviors of GLARE 5 FML plates: part Ⅱ –numerical studies [J]. Journal of Composite Materials, 2014, 48(19): 2363–2374. doi: 10.1177/0021998313498104 [17] SEYED YAGHOUBI A, LIAW B. Influences of thickness and stacking sequence on ballistic impact behaviors of GLARE 5 FML plates: part Ⅰ –experimental studies [J]. Journal of Composite Materials, 2014, 48(16): 2011–2021. doi: 10.1177/0021998313494097 [18] SONG S H, KU T W, KIM J, et al. Investigation on the equivalent material property of carbon reinforced aluminum laminates [J]. International Journal of Modern Physics B, 2008, 22(31/32): 6149–6154. [19] GONZALEZ-CANCHE N G, FLORES-JOHNSON E A, CARRILLO J G. Mechanical characterization of fiber metal laminate based on aramid fiber reinforced polypropylene [J]. Composite Structures, 2017, 172: 259–266. doi: 10.1016/j.compstruct.2017.02.100 [20] REYES V G, CANTWELL W J. The mechanical properties of fibre-metal laminates based on glass fibre reinforced polypropylene [J]. Composites Science and Technology, 2000, 60(7): 1085–1094. doi: 10.1016/S0266-3538(00)00002-6 [21] SANTIAGO R C, CANTWELL W J, JONES N, et al. The modelling of impact loading on thermoplastic fibre-metal laminates [J]. Composite Structures, 2018, 189: 228–238. doi: 10.1016/j.compstruct.2018.01.052 [22] EDRI I, SAVIR Z, FELDGUN V, et al. On blast pressure analysis due to a partially confined explosion: Ⅰ . experimental studies [J]. International Journal of Protective Structures, 2011, 2(1): 1–20. doi: 10.1260/2041-4196.2.1.1 [23] HU Y, WU C Q, LUKASZEWICZ M, et al. Characteristics of confined blast loading in unvented structures [J]. International Journal of Protective Structures, 2011, 2(1): 21–44. doi: 10.1260/2041-4196.2.1.21 [24] 孔祥韶, 徐敬博, 徐维铮. 舱室密闭空间中爆炸载荷后燃烧效应数值计算研究 [J]. 兵工学报, 2019, 40(4): 130–137.KONG X S, XU J B, XU W Z. Numerical study of influence of afterburning effect on blast load in confined cabin [J]. Acta Armamentarii, 2019, 40(4): 130–137. [25] FAN J Y, GUAN Z W, CANTWELL W J. Structural behaviour of fibre metal laminates subjected to a low velocity impact [J]. Science China: Physics Mechanics and Astronomy, 2011, 54(6): 1168–1177. [26] VLOT A. Impact properties of fiber metal laminates [J]. Composites Engineering, 1993, 3(10): 911–927. doi: 10.1016/0961-9526(93)90001-Z [27] SEYED YAGHOUBI A, LIU Y, LIAW B. Low-velocity impact on GLARE 5 fiber-metal laminates: influences of specimen thickness and impactor mass [J]. Journal of Aerospace Engineering, 2012, 25(3): 409–420. doi: 10.1061/(ASCE)AS.1943-5525.0000134 [28] SITNIKOVA E, GUAN Z W, CANTWELL W J. The analysis of the ultimate blast failure modes in fibre metal laminates [J]. Composites Science and Technology, 2016, 135: 1–12. [29] VO T P, GUAN Z W, CANTWELL W J, et al. Modelling of the low-impulse blast behaviour of fibre-metal laminates based on different aluminium alloys [J]. Composites Part B: Engineering, 2013, 44(1): 141–151. doi: 10.1016/j.compositesb.2012.06.013 [30] VO T P, GUAN Z W, CANTWELL W J, et al. Low-impulse blast behaviour of fibre-metal laminates [J]. Composite Structures, 2012, 94(3): 954–965. doi: 10.1016/j.compstruct.2011.10.027