Energy Output Characteristics and Evaluation Method of Poly-Black Aluminum Explosive
-
摘要: 为了研究RDX基聚黑铝炸药(JHL-X)的能量输出特性及其评估方法,通过绝热式量热仪、水下爆炸系统、空爆系统分别测试了JHL-X的爆热、水下爆炸能量、地面超压。结果表明:JHL-X在真空中的爆热值与在N2中的爆热值基本一致,约为1.75倍TNT当量;在空气中的爆热值为8045.724 J/g,为1.93倍TNT当量,比真空和N2中高10%。JHL-X水下爆炸中的冲击波能、气泡能分别为0.935、4.614 kJ/g,总能量为1.83倍TNT当量。空爆时,根据通过地面超压得出的TNT和JHL-X超压公式,得到1.5、2.0、2.5 m处的JHL-X的TNT当量分别为2.14、1.70、1.75,均值为1.86。采用水下爆炸和真空爆热法时,因外界环境不供氧,致使两种实验方法评估出的JHL-X炸药能量一致;而采用空爆和空气爆热法时,因外部环境供氧,致使含铝炸药中Al的反应增加,总能量提高,两种方法得到的实验结果相近。因此,在评估炸药能量水平时,需考虑炸药配方设计和实际用途,进而选择合适的评估方法。Abstract: In order to study the energy output characteristics of the RDX-based aluminum explosive (JHL-X) and its energy level evaluation method, the explosion heat value and underwater explosion of JHL-X were tested through adiabatic calorimeter, underwater explosion system, and air blast system. Energy, ground overpressure. The results show that the explosion heat value of JHL-X in vacuum is basically the same as that in N2, about is 1.75 times TNT equivalent; the explosion heat value in air is 8045.724 J/g, 1.93 times TNT equivalent, which is 10% higher than vacuum and N2. The shock wave energy and bubble energy of JHL-X in an underwater explosion are 0.935 and 4.614 kJ/g, and the total energy is 1.83 times TNT equivalent. In an air blast, the TNT and JHL-X overpressure formulas derived from ground overpressure show that the TNT equivalents at 1.5, 2.0, and 2.5 m are 2.14, 1.70, and 1.75 times, respectively, and the average value is 1.86 times. In addition, the underwater explosion and the explosion heat in vacuum are not provided with oxygen from the external environment, so that the two experiment methods maintain consistency when evaluating the energy level of JHL-X explosives. The air blast and explosion heat in the air have oxygen supply from the external environment, which causes reaction of Al in the aluminum-containing explosive to increase, so the total energy increased, results of these two experiments are similar. Therefore, when evaluating the energy level of explosives, it is necessary to consider the explosive formulation design and practical use, then select different evaluation methods.
-
Key words:
- TNT equivalence /
- detonation heat /
- underwater explosion /
- air blast /
- methods of energy evaluation
-
表 1 绝热式量热仪的爆热结果
Table 1. Experimental results of adiabatic detonation calorimeter
Sample m/g Condition QV,T/(J·g−1) $\overline{{Q}} $V,T/(J·g−1) TNT equivalence TNT 20.1542 Vacuum 4160.542 4170.878 1.00 20.0216 Vacuum 4181.214 JHL-X 28.1652 Vacuum 7223.296 7301.088 1.75 28.1848 vacuum 7378.879 JHL-X 28.1792 N2, 0.1 MPa 7303.500 7308.060 1.75 28.1643 N2, 0.1 MPa 7312.620 JHL-X 28.1781 Air, 0.1 MPa 8017.592 8045.724 1.93 28.1824 Air, 0.1 MPa 8073.856 表 2 水下爆炸结果
Table 2. Underwater explosion results
Sample pm/MPa $\theta $/$ {\text{μ}}{\rm{s}}$ Es/(kJ·g−1) T/s Eb/(kJ·g−1) Eu/(kJ·g−1) TNT equivalence TNT 5.472 57.6 0.762 0.131 2.268 3.030 1.00 JHL-X 6.013 74.2 0.888 0.141 4.580 5.468 1.80 JHL-X 5.945 70.8 0.968 0.142 4.678 5.646 1.86 JHL-X 5.705 78.1 0.950 0.141 4.585 5.535 1.83 Ave. (JHL-X) 5.888 74.4 0.935 0.141 4.614 5.550 1.83 表 3 TNT和JHL-X的超压
Table 3. Overpressure of TNT and JHL-X
Sample m/g Line pm/kPa 1.0 m 1.5 m 2.0 m 2.5 m TNT 1201.7 OA 1414.91 793.58 688.51 301.55 OB 559.01 258.15 1584.1 OA 2866.66 1554.84 687.23 377.59 OB 2972.43 1370.58 735.99 360.19 JHL-X 1584.7 OA 982.10 614.20 577.96 OB 1070.18 717.62 456.54 1584.3 OA 1083.40 691.73 525.60 OB 1046.54 707.67 445.85 表 4 JHL-X的TNT当量
Table 4. TNT equivalence of JHL-X
No. R/m pm(JHL-X)/kPa w1/kg TNT equivalence Average TNT equivalence 1 1.5 1188.79 2.576 2.14 1.86 2 2.0 681.81 2.045 1.70 3 2.5 463.74 2.110 1.75 -
[1] MEYER R, KÖHLER J, HOMBURG A. Explosives [M]. Hoboken, NJ: John Wiley & Sons, 2016. [2] FORDHAM S. High explosives and propellants [M]. Amsterdam: Elsevier, 2013. [3] KINNEY G F, GRAHAM K J. Explosive shocks in air [M]. Berlin, Heidelberg: Springer Science & Business Media, 2013. [4] SUCESKA M. Test methods for explosives [M]. Berlin, Heidelberg: Springer Science & Business Media, 2012. [5] TRZCIŃSKI W A, CUDZIŁO S, PASZULA J. Studies of free field and confined explosions of aluminium enriched RDX compositions [J]. Propellants, Explosives, Pyrotechnics, 2007, 32(6): 502–508. doi: 10.1002/prep.200700202 [6] CUDZIŁO S, TRZCIŃSKI W A, PASZULA J, et al. Effect of titanium and zirconium hydrides on the detonation heat of RDX-based explosives: a comparison to aluminium [J]. Propellants, Explosives, Pyrotechnics, 2018, 43(3): 280–285. doi: 10.1002/prep.201700237 [7] XIANG D L, RONG J L, HE X. Detonation performance of four groups of aluminized explosives [J]. Central European Journal of Energetic Materials, 2016, 13(4): 903–915. [8] BJARNHOLT G, HOLMBERG R. Explosives expansion works in underwater detonations [C]//6th Symposium on Detonation. San Diego, CA, 1976: 540−550. [9] COLE R H. Underwater explosions [M]. New York: Dover Publications, 1965. [10] 牟金磊, 朱锡, 李海涛, 等. 炸药水下爆炸能量输出特性试验研究 [J]. 高压物理学报, 2010, 24(2): 88–92. doi: 10.3969/j.issn.1000-5773.2010.02.002MU J L, ZHU X, LI H T, et al. Experimental research on underwater explosion energy output of explosive [J]. Chinese Journal of High Pressure Physics, 2010, 24(2): 88–92. doi: 10.3969/j.issn.1000-5773.2010.02.002 [11] ZHAO Q, NIE J X, WANG Q S, et al. Numerical and experimental study on cyclotrimethylenetrinitramine/aluminum explosives in underwater explosions [J]. Advances in Mechanical Engineering, 2016, 8(10): 1–10. [12] 冯凇, 饶国宁, 彭金华. CL-20基含铝炸药水下爆炸实验研究与数值模拟 [J]. 含能材料, 2018, 26(8): 686–695. doi: 10.11943/CJEM2017376FENG S, RAO G N, PENG J H. Experimental study and numerical simulation of CL-20-based aluminized explosive in underwater explosion [J]. Chinese Journal of Energetic Materials, 2018, 26(8): 686–695. doi: 10.11943/CJEM2017376 [13] XIAO W, ANDRAE M, GEBBEKEN N. Air blast TNT equivalence factors of high explosive material PETN for bare charges [J]. Journal of Hazardous Materials, 2019, 377: 152–162. doi: 10.1016/j.jhazmat.2019.05.078 [14] LI X L, CAO W, SONG Q G, et al. Study on energy output characteristics of explosives containing B/Al in the air blast [J]. Combustion, Explosion, and Shock Waves, 2019, 55(6): 723–731. doi: 10.1134/S0010508219060145 [15] XU S, CHEN Y, CHEN X, et al. Combustion heat of the Al/B powder and its application in metallized explosives in underwater explosions [J]. Combustion, Explosion, and Shock Waves, 2016, 52(3): 342–349. doi: 10.1134/S001050821603014X [16] CHEN Y, CHEN X, WU D, et al. Underwater explosion analysis of hexogen-enriched novel hydrogen storage alloy [J]. Journal of Energetic Materials, 2016, 34(1): 49–61. doi: 10.1080/07370652.2014.996271 [17] MILLER P J. A reactive flow model with coupled reaction kinetics for detonation and combustion in non-ideal explosives [J]. MRS Online Proceedings Library Archive, 1995, 418: 413–420. [18] YEN N H, WANG L Y. Reactive metals in explosives [J]. Propellants, Explosives, Pyrotechnics, 2012, 37(2): 143–155. doi: 10.1002/prep.200900050 [19] XIANG D L, RONG J L, LI J. Effect of Al/O ratio on the detonation performance and underwater explosion of HMX-based aluminized explosives [J]. Propellants, Explosives, Pyrotechnics, 2014, 39(1): 65–73. doi: 10.1002/prep.201300026 [20] BEN-DOR G, IVANOV M, VASILEV E I, et al. Hysteresis processes in the regular reflection Mach reflection transition in steady flows [J]. Progress in Aerospace Sciences, 2002, 38(4/5): 347–387. [21] COURANT R, FRIEDRICHS K O. Supersonic flow and shock waves [M]. Berlin, Heidelberg: Springer Science & Business Media, 1948.