聚黑铝炸药的能量输出特性及评估方法

吴星亮 王旭 徐飞扬 马腾 董卓超 徐森 刘大斌

吴星亮, 王旭, 徐飞扬, 马腾, 董卓超, 徐森, 刘大斌. 聚黑铝炸药的能量输出特性及评估方法[J]. 高压物理学报, 2022, 36(2): 025103. doi: 10.11858/gywlxb.20210818
引用本文: 吴星亮, 王旭, 徐飞扬, 马腾, 董卓超, 徐森, 刘大斌. 聚黑铝炸药的能量输出特性及评估方法[J]. 高压物理学报, 2022, 36(2): 025103. doi: 10.11858/gywlxb.20210818
WU Xingliang, WANG Xu, XU Feiyang, MA Teng, DONG Zhuochao, XU Sen, LIU Dabin. Energy Output Characteristics and Evaluation Method of Poly-Black Aluminum Explosive[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025103. doi: 10.11858/gywlxb.20210818
Citation: WU Xingliang, WANG Xu, XU Feiyang, MA Teng, DONG Zhuochao, XU Sen, LIU Dabin. Energy Output Characteristics and Evaluation Method of Poly-Black Aluminum Explosive[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025103. doi: 10.11858/gywlxb.20210818

聚黑铝炸药的能量输出特性及评估方法

doi: 10.11858/gywlxb.20210818
基金项目: 国防科技重点实验室基金(6142603200509,6142603180408)
详细信息
    作者简介:

    吴星亮(1994-),男,博士研究生,主要从事含能材料的能量输出特性研究.E-mail:wuxingliang94@163.com

    通讯作者:

    徐 森(1981-),男,博士,教授,主要从事爆炸力学研究. E-mail:xusen@njust.edu.cn

  • 中图分类号: O389; TJ55

Energy Output Characteristics and Evaluation Method of Poly-Black Aluminum Explosive

  • 摘要: 为了研究RDX基聚黑铝炸药(JHL-X)的能量输出特性及其评估方法,通过绝热式量热仪、水下爆炸系统、空爆系统分别测试了JHL-X的爆热、水下爆炸能量、地面超压。结果表明:JHL-X在真空中的爆热值与在N2中的爆热值基本一致,约为1.75倍TNT当量;在空气中的爆热值为8045.724 J/g,为1.93倍TNT当量,比真空和N2中高10%。JHL-X水下爆炸中的冲击波能、气泡能分别为0.935、4.614 kJ/g,总能量为1.83倍TNT当量。空爆时,根据通过地面超压得出的TNT和JHL-X超压公式,得到1.5、2.0、2.5 m处的JHL-X的TNT当量分别为2.14、1.70、1.75,均值为1.86。采用水下爆炸和真空爆热法时,因外界环境不供氧,致使两种实验方法评估出的JHL-X炸药能量一致;而采用空爆和空气爆热法时,因外部环境供氧,致使含铝炸药中Al的反应增加,总能量提高,两种方法得到的实验结果相近。因此,在评估炸药能量水平时,需考虑炸药配方设计和实际用途,进而选择合适的评估方法。

     

  • 图  绝热式爆热量热仪

    Figure  1.  Adiabatic detonation calorimeter

    图  装药结构

    Figure  2.  Charge structure

    图  水下爆炸系统

    Figure  3.  Underwater explosive device

    图  空爆系统

    Figure  4.  Air blast device

    图  JHL-X的水下爆炸冲击波压力

    Figure  5.  Shock wave pressure of JHL-X in underwater explosion

    图  JHL-X在第1次气泡脉动期间的压力曲线

    Figure  6.  Pressure curve of JHL-X during the first bubble period

    图  TNT和JHL-X的冲击波超压

    Figure  7.  Overpressure of TNT and JHL-X

    图  JHL-X的超压误差棒

    Figure  8.  Overpressure error bar of JHL-X

    图  TNT和JHL-X的拟合曲线

    Figure  9.  Fit curve of TNT and JHL-X

    图  10  不同实验方法下JHL-X的TNT当量

    Figure  10.  TNT equivalent of JHL-X under different experimental methods

    表  1  绝热式量热仪的爆热结果

    Table  1.   Experimental results of adiabatic detonation calorimeter

    Samplem/gConditionQV,T/(J·g−1)$\overline{{Q}} $V,T/(J·g−1)TNT equivalence
    TNT20.1542Vacuum4160.5424170.8781.00
    20.0216Vacuum4181.214
    JHL-X28.1652Vacuum7223.2967301.0881.75
    28.1848vacuum7378.879
    JHL-X28.1792N2, 0.1 MPa7303.5007308.0601.75
    28.1643N2, 0.1 MPa7312.620
    JHL-X28.1781Air, 0.1 MPa8017.5928045.7241.93
    28.1824Air, 0.1 MPa8073.856
    下载: 导出CSV

    表  2  水下爆炸结果

    Table  2.   Underwater explosion results

    Samplepm/MPa$\theta $/$ {\text{μ}}{\rm{s}}$Es/(kJ·g−1)T/sEb/(kJ·g−1)Eu/(kJ·g−1)TNT equivalence
    TNT5.47257.60.7620.1312.2683.0301.00
    JHL-X6.01374.20.8880.1414.5805.4681.80
    JHL-X5.94570.80.9680.1424.6785.6461.86
    JHL-X5.70578.10.9500.1414.5855.5351.83
    Ave. (JHL-X)5.88874.40.9350.1414.6145.5501.83
    下载: 导出CSV

    表  3  TNT和JHL-X的超压

    Table  3.   Overpressure of TNT and JHL-X

    Samplem/gLinepm/kPa
    1.0 m1.5 m2.0 m 2.5 m
    TNT1201.7OA1414.91 793.58688.51301.55
    OB559.01258.15
    1584.1OA2866.661554.84687.23377.59
    OB2972.431370.58735.99360.19
    JHL-X1584.7OA 982.10614.20577.96
    OB1070.18717.62456.54
    1584.3OA1083.40691.73525.60
    OB1046.54707.67445.85
    下载: 导出CSV

    表  4  JHL-X的TNT当量

    Table  4.   TNT equivalence of JHL-X

    No.R/mpm(JHL-X)/kPaw1/kgTNT equivalenceAverage TNT equivalence
    11.51188.792.5762.141.86
    22.0681.812.0451.70
    32.5463.742.1101.75
    下载: 导出CSV
  • [1] MEYER R, KÖHLER J, HOMBURG A. Explosives [M]. Hoboken, NJ: John Wiley & Sons, 2016.
    [2] FORDHAM S. High explosives and propellants [M]. Amsterdam: Elsevier, 2013.
    [3] KINNEY G F, GRAHAM K J. Explosive shocks in air [M]. Berlin, Heidelberg: Springer Science & Business Media, 2013.
    [4] SUCESKA M. Test methods for explosives [M]. Berlin, Heidelberg: Springer Science & Business Media, 2012.
    [5] TRZCIŃSKI W A, CUDZIŁO S, PASZULA J. Studies of free field and confined explosions of aluminium enriched RDX compositions [J]. Propellants, Explosives, Pyrotechnics, 2007, 32(6): 502–508. doi: 10.1002/prep.200700202
    [6] CUDZIŁO S, TRZCIŃSKI W A, PASZULA J, et al. Effect of titanium and zirconium hydrides on the detonation heat of RDX-based explosives: a comparison to aluminium [J]. Propellants, Explosives, Pyrotechnics, 2018, 43(3): 280–285. doi: 10.1002/prep.201700237
    [7] XIANG D L, RONG J L, HE X. Detonation performance of four groups of aluminized explosives [J]. Central European Journal of Energetic Materials, 2016, 13(4): 903–915.
    [8] BJARNHOLT G, HOLMBERG R. Explosives expansion works in underwater detonations [C]//6th Symposium on Detonation. San Diego, CA, 1976: 540−550.
    [9] COLE R H. Underwater explosions [M]. New York: Dover Publications, 1965.
    [10] 牟金磊, 朱锡, 李海涛, 等. 炸药水下爆炸能量输出特性试验研究 [J]. 高压物理学报, 2010, 24(2): 88–92. doi: 10.3969/j.issn.1000-5773.2010.02.002

    MU J L, ZHU X, LI H T, et al. Experimental research on underwater explosion energy output of explosive [J]. Chinese Journal of High Pressure Physics, 2010, 24(2): 88–92. doi: 10.3969/j.issn.1000-5773.2010.02.002
    [11] ZHAO Q, NIE J X, WANG Q S, et al. Numerical and experimental study on cyclotrimethylenetrinitramine/aluminum explosives in underwater explosions [J]. Advances in Mechanical Engineering, 2016, 8(10): 1–10.
    [12] 冯凇, 饶国宁, 彭金华. CL-20基含铝炸药水下爆炸实验研究与数值模拟 [J]. 含能材料, 2018, 26(8): 686–695. doi: 10.11943/CJEM2017376

    FENG S, RAO G N, PENG J H. Experimental study and numerical simulation of CL-20-based aluminized explosive in underwater explosion [J]. Chinese Journal of Energetic Materials, 2018, 26(8): 686–695. doi: 10.11943/CJEM2017376
    [13] XIAO W, ANDRAE M, GEBBEKEN N. Air blast TNT equivalence factors of high explosive material PETN for bare charges [J]. Journal of Hazardous Materials, 2019, 377: 152–162. doi: 10.1016/j.jhazmat.2019.05.078
    [14] LI X L, CAO W, SONG Q G, et al. Study on energy output characteristics of explosives containing B/Al in the air blast [J]. Combustion, Explosion, and Shock Waves, 2019, 55(6): 723–731. doi: 10.1134/S0010508219060145
    [15] XU S, CHEN Y, CHEN X, et al. Combustion heat of the Al/B powder and its application in metallized explosives in underwater explosions [J]. Combustion, Explosion, and Shock Waves, 2016, 52(3): 342–349. doi: 10.1134/S001050821603014X
    [16] CHEN Y, CHEN X, WU D, et al. Underwater explosion analysis of hexogen-enriched novel hydrogen storage alloy [J]. Journal of Energetic Materials, 2016, 34(1): 49–61. doi: 10.1080/07370652.2014.996271
    [17] MILLER P J. A reactive flow model with coupled reaction kinetics for detonation and combustion in non-ideal explosives [J]. MRS Online Proceedings Library Archive, 1995, 418: 413–420.
    [18] YEN N H, WANG L Y. Reactive metals in explosives [J]. Propellants, Explosives, Pyrotechnics, 2012, 37(2): 143–155. doi: 10.1002/prep.200900050
    [19] XIANG D L, RONG J L, LI J. Effect of Al/O ratio on the detonation performance and underwater explosion of HMX-based aluminized explosives [J]. Propellants, Explosives, Pyrotechnics, 2014, 39(1): 65–73. doi: 10.1002/prep.201300026
    [20] BEN-DOR G, IVANOV M, VASILEV E I, et al. Hysteresis processes in the regular reflection Mach reflection transition in steady flows [J]. Progress in Aerospace Sciences, 2002, 38(4/5): 347–387.
    [21] COURANT R, FRIEDRICHS K O. Supersonic flow and shock waves [M]. Berlin, Heidelberg: Springer Science & Business Media, 1948.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  1074
  • HTML全文浏览量:  649
  • PDF下载量:  48
出版历程
  • 收稿日期:  2021-06-18
  • 修回日期:  2021-07-07

目录

    /

    返回文章
    返回