新型仿生蜂窝结构的设计与耐撞性能分析

于鹏山 刘志芳 李世强

于鹏山, 刘志芳, 李世强. 新型仿生蜂窝结构的设计与耐撞性能分析[J]. 高压物理学报, 2022, 36(1): 014204. doi: 10.11858/gywlxb.20210817
引用本文: 于鹏山, 刘志芳, 李世强. 新型仿生蜂窝结构的设计与耐撞性能分析[J]. 高压物理学报, 2022, 36(1): 014204. doi: 10.11858/gywlxb.20210817
YU Pengshan, LIU Zhifang, LI Shiqiang. Design and Crashworthiness Analysis of New Bionic Honeycomb Structure[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014204. doi: 10.11858/gywlxb.20210817
Citation: YU Pengshan, LIU Zhifang, LI Shiqiang. Design and Crashworthiness Analysis of New Bionic Honeycomb Structure[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014204. doi: 10.11858/gywlxb.20210817

新型仿生蜂窝结构的设计与耐撞性能分析

doi: 10.11858/gywlxb.20210817
基金项目: 国家自然科学基金(11772216,12072219)
详细信息
    作者简介:

    于鹏山(1994-),男,硕士研究生,主要从事冲击动力学研究. E-mail:1850068840@qq.com

    通讯作者:

    刘志芳(1971-),女,副教授,主要从事冲击动力学研究. E-mail:liuzhifang@tyut.edu.cn

  • 中图分类号: O341

Design and Crashworthiness Analysis of New Bionic Honeycomb Structure

  • 摘要: 受自然界毛竹微观结构的启发,在传统圆管与六边形管的基础上引入内管及双菱形肋骨,通过拓扑衍生方法设计了两种新型仿生蜂窝结构。在此基础上利用有限元软件ABAQUS对新型仿生蜂窝的耐撞性进行数值模拟,研究了蜂窝单胞构型、蜂窝壁厚、双菱形肋骨夹角对仿生蜂窝耐撞性能的影响。此外,基于超折叠单元理论,建立了仿生蜂窝结构的理论分析模型。结果表明:仿生蜂窝的面外压缩耐撞性能优于传统圆形蜂窝和传统六边形蜂窝。新型仿生六边形蜂窝的比吸能相比传统六边形蜂窝提高51.18%,压缩力效率提高53.14%。仿生蜂窝结构的平均压缩力理论预测结果与数值模拟结果吻合,两者间的误差均在10%以内。单胞构型为六边形的仿生蜂窝的耐撞性能优于圆形仿生蜂窝。适当增加仿生蜂窝壁厚或增大双菱形肋骨夹角,均有利于提高结构的耐撞性能。

     

  • 图  仿生蜂窝结构设计

    Figure  1.  Structural design of bionic honeycombs

    图  仿生蜂窝有限元模型

    Figure  2.  Finite element model of bionic honeycomb

    图  网格敏感性验证

    Figure  3.  Sensitivity verification of element size

    图  数值模拟与实验[12]结果对比

    Figure  4.  Comparison of numerical simulation and experimental results[12]

    图  不同类型蜂窝的耐撞性比较:(a) 载荷-位移曲线,(b) BHH的载荷-位移曲线,(c) PCF和SEA,(d) CFE

    Figure  5.  Crashworthiness comparison of different honeycombs: (a) load-displacement curve, (b) load-displacement curve of BHH, (c) PCF and SEA, (d) CFE

    图  简化超折叠单元模式[20]:(a)拉伸单元,(b)弯曲塑性铰线,(c)基本折叠单元凸缘完全压缩

    Figure  6.  Scheme of simplified super folding element: (a) extensional element, (b) bending hinge lines, (c) full compression of flange (basic folding element)

    图  仿生蜂窝单胞变形模式:(a) BHH单胞,(b) BRH单胞

    Figure  7.  Bionic honeycomb single cell deformation mode: (a) BHH single cell, (b) BRH single cell

    图  结构基本单元分布与简化

    Figure  8.  Distribution and simplification of basic constitutive elements

    图  基本角单元:(a) X型单元,(b) K型单元

    Figure  9.  Basic angle element: (a) X-shape element, (b) K-shape element

    图  10  仿生蜂窝的载荷-位移曲线:(a) BRH,(b) BHH

    Figure  10.  Load-displacement curves of bionic honeycombs: (a) BRH, (b) BHH

    图  11  不同壁厚下两种仿生蜂窝的耐撞参数对比

    Figure  11.  Crashworthiness comparison of two bionic honeycombs at different thicknesses of membrane

    图  12  不同肋骨夹角下两种仿生蜂窝的耐撞参数对比:(a) PCF,(b) MCF,(c) SEA,(d) CFE

    Figure  12.  Crashworthiness comparison of two bionic honeycombs at different rib angles: (a) PCF, (b) MCF, (c) SEA, (d) CFE

    图  13  仿生蜂窝的变形模式与应变云图:(a) BHH的变形模式,(b) BRH的变形模式,(c) BHH的等效塑性应变,(d) BRH的等效塑性应变

    Figure  13.  Deformation modes and equivalent plastic strain of the bionic honeycombs: (a) deformation mode of BHH, (b) deformation mode of BRH, (c) equivalent plastic strain of BHH, (d) equivalent plastic strain of BRH

    表  1  传统蜂窝与仿生蜂窝的结构尺寸

    Table  1.   Structure sizes of traditional honeycombs and bionic honeycombs

    Honeycomb typeRH HH BRH BHH
    Cross section shape
    Single cell
    Single cell sizeD=10 mmD=10 mm D=10 mm,
    d=5 mm,
    a = 0.58 mm,
    b = 0.87 mm,
    $\alpha $ = 60°
    D=10 mm,
    d=5 mm,
    a = 0.58 mm,
    b = 0.87 mm,
    $\alpha $ = 60°
    下载: 导出CSV

    表  2  数值模拟与理论预测结果对比

    Table  2.   Comparison of numerical simulation and theory

    Structure type t/mmM/gpmd/kNError/%
    Sim.Theory
    BRH 0.0151.661.461.42−2.74
    BRH 0.0303.313.914.022.81
    BRH 0.0454.976.575.99−8.82
    BRH 0.0606.628.849.022.04
    BRH 0.0758.2811.47 11.91 3.84
    BRH 0.0909.9315.05 15.66 4.05
    BHH 0.0151.461.411.442.13
    BHH 0.0302.923.663.59−1.91
    BHH 0.0454.386.076.120.82
    BHH 0.0605.848.728.69−0.34
    BHH 0.0757.3011.77 12.15 3.23
    BHH 0.0908.7515.31 15.97 4.31
    下载: 导出CSV
  • [1] AKTAY L, JOHNSON A F, KRÖPLIN B H. Numerical modelling of honeycomb core crush behaviour [J]. Engineering Fracture Mechanics, 2008, 75(9): 2616–2630. doi: 10.1016/j.engfracmech.2007.03.008
    [2] LI Z J, YANG Q S, FANG R, et al. Crushing performances of Kirigami modified honeycomb structure in three axial directions [J]. Thin-Walled Structures, 2021, 160: 107365. doi: 10.1016/j.tws.2020.107365
    [3] ASHAB A, RUAN D, LU G X, et al. Combined compression-shear behavior of aluminum honeycombs [J]. Key Engineering Materials, 2014, 626: 127–132. doi: 10.4028/www.scientific.net/KEM.626.127
    [4] XU S Q, BEYNON J H, RUAN D, et al. Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs [J]. Composite Structures, 2012, 94(8): 2326–2336. doi: 10.1016/j.compstruct.2012.02.024
    [5] MOUSANEZHAD D, GHOSH R, AJDARI A, et al. Impact resistance and energy absorption of regular and functionally graded hexagonal honeycombs with cell wall material strain hardening [J]. International Journal of Mechanical Sciences, 2014, 89: 413–422. doi: 10.1016/j.ijmecsci.2014.10.012
    [6] 夏元明, 张威, 崔天宁, 等. 金属多级类蜂窝的压溃行为研究 [J]. 力学学报, 2019, 51(3): 873–883. doi: 10.6052/0459-1879-18-434

    XIA Y M, ZHANG W, CUI T N, et al. Investigation on crushing behavior of metal honeycomb-like hierarchical structures [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 873–883. doi: 10.6052/0459-1879-18-434
    [7] 王海任, 李世强, 刘志芳, 等. 王莲仿生梯度蜂窝的面外压缩行为 [J]. 高压物理学报, 2020, 34(6): 064204. doi: 10.11858/gywlxb.20200562

    WANG H R, LI S Q, LIU Z F, et al. Out-of-plane compression performance of gradient honeycomb inspired by royal water lily [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 064204. doi: 10.11858/gywlxb.20200562
    [8] 樊喜刚, 尹西岳, 陶勇, 等. 梯度蜂窝面外动态压缩力学行为与吸能特性研究 [J]. 固体力学学报, 2015, 36(2): 114–122.

    FAN X G, YIN X Y, TAO Y, et al. Mechanical behavior and energy absorption of graded honeycomb materials under out-of-plane dynamic compression [J]. Chinese Journal of Solid Mechanics, 2015, 36(2): 114–122.
    [9] XIANG J W, DU J X. Energy absorption characteristics of bio-inspired honeycomb structure under axial impact loading [J]. Materials Science and Engineering: A, 2017, 696: 283–289. doi: 10.1016/j.msea.2017.04.044
    [10] HE Q, WANG Y H, GU H, et al. Dynamic crushing analysis of a circular honeycomb with leaf vein branched characteristic [J]. Mechanics of Materials, 2021, 153: 103566. doi: 10.1016/j.mechmat.2020.103566
    [11] YANG X F, SUN Y X, YANG J L, et al. Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure [J]. Thin-Walled Structures, 2018, 125: 1–11. doi: 10.1016/j.tws.2018.01.014
    [12] HE Q, FENG J, CHEN Y J, et al. Mechanical properties of spider-web hierarchical honeycombs subjected to out-of-plane impact loading [J]. Journal of Sandwich Structures and Materials, 2020, 22(3): 771–796.
    [13] YANG X F, XI X L, PAN Q F, et al. In-plane dynamic crushing of a novel circular-celled honeycomb nested with petal-shaped mesostructure [J]. Composite Structures, 2019, 226: 111219. doi: 10.1016/j.compstruct.2019.111219
    [14] ZHANG D H, FEI Q G, ZHANG P W. In-plane dynamic crushing behavior and energy absorption of honeycombs with a novel type of multi-cells [J]. Thin-Walled Structures, 2017, 117: 199–210. doi: 10.1016/j.tws.2017.03.028
    [15] ZHANG Y, LU M H, WANG C H, et al. Out-of-plane crashworthiness of bio-inspired self-similar regular hierarchical honeycombs [J]. Composite Structures, 2016, 144: 1–13. doi: 10.1016/j.compstruct.2016.02.014
    [16] YIN H F, HUANG X F, SCARPA F, et al. In-plane crashworthiness of bio-inspired hierarchical honeycombs [J]. Composite Structures, 2018, 192: 516–527. doi: 10.1016/j.compstruct.2018.03.050
    [17] QIAO J X, CHEN C Q. In-plane crushing of a hierarchical honeycomb [J]. International Journal of Solids and Structures, 2016, 85/86: 57–66. doi: 10.1016/j.ijsolstr.2016.02.003
    [18] ZHANG X, ZHANG H, WEN Z Z. Experimental and numerical studies on the crush resistance of aluminum honeycombs with various cell configurations [J]. International Journal of Impact Engineering, 2014, 66: 48–59. doi: 10.1016/j.ijimpeng.2013.12.009
    [19] CHEN B C, ZOU M, LIU G M, et al. Experimental study on energy absorption of bionic tubes inspired by bamboo structures under axial crushing [J]. International Journal of Impact Engineering, 2018, 115: 48–57. doi: 10.1016/j.ijimpeng.2018.01.005
    [20] WIERZBICKI T, ABRAMOWICZ W. On the crushing mechanics of thin-walled structures [J]. Journal of Applied Mechanics, 1983, 50(4a): 727–734. doi: 10.1115/1.3167137
    [21] ZHANG X, ZHANG H. Axial crushing of circular multi-cell columns [J]. International Journal of Impact Engineering, 2014, 65: 110–125. doi: 10.1016/j.ijimpeng.2013.12.002
    [22] TRAN T, HOU S J, HAN X, et al. Crushing analysis and numerical optimization of angle element structures under axial impact loading [J]. Composite Structures, 2015, 119: 422–435. doi: 10.1016/j.compstruct.2014.09.019
    [23] ZHANG Y, XU X, WANG J, et al. Crushing analysis for novel bio-inspired hierarchical circular structures subjected to axial load [J]. International Journal of Mechanical Sciences, 2018, 140: 407–431. doi: 10.1016/j.ijmecsci.2018.03.015
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  1109
  • HTML全文浏览量:  796
  • PDF下载量:  94
出版历程
  • 收稿日期:  2021-06-18
  • 修回日期:  2021-07-01

目录

    /

    返回文章
    返回