碳酸铅在不同传压介质下的高压拉曼研究

阿卜力孜 • 麦提图尔荪 艾尼瓦尔 • 吾术尔 谢翠焕 亓文明

阿卜力孜 • 麦提图尔荪, 艾尼瓦尔 • 吾术尔, 谢翠焕, 亓文明. 碳酸铅在不同传压介质下的高压拉曼研究[J]. 高压物理学报, 2022, 36(1): 011201. doi: 10.11858/gywlxb.20210813
引用本文: 阿卜力孜 • 麦提图尔荪, 艾尼瓦尔 • 吾术尔, 谢翠焕, 亓文明. 碳酸铅在不同传压介质下的高压拉曼研究[J]. 高压物理学报, 2022, 36(1): 011201. doi: 10.11858/gywlxb.20210813
ABLIZ Matursun, ANWAR Hushur, XIE Cuihuan, QI Wenming. High Pressure Raman Spectroscopic Study of PbCO3 in Different Pressure Transmitting Medium[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 011201. doi: 10.11858/gywlxb.20210813
Citation: ABLIZ Matursun, ANWAR Hushur, XIE Cuihuan, QI Wenming. High Pressure Raman Spectroscopic Study of PbCO3 in Different Pressure Transmitting Medium[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 011201. doi: 10.11858/gywlxb.20210813

碳酸铅在不同传压介质下的高压拉曼研究

doi: 10.11858/gywlxb.20210813
基金项目: 教育部留学回国人员科研启动基金(60594)
详细信息
    作者简介:

    阿卜力孜 • 麦提图尔荪(1993-),男,硕士研究生,主要从事矿物质在高压下的稳定性研究.E-mail:1715038477@qq.com

    通讯作者:

    艾尼瓦尔 • 吾术尔(1974-),男,博士,主要从事高压高温材料制备以及高温高压下地球物质特性研究. E-mail:anwar.hushur@outlook.com

  • 中图分类号: O521.2

High Pressure Raman Spectroscopic Study of PbCO3 in Different Pressure Transmitting Medium

  • 摘要: 为研究PbCO3在高压下的稳定性,利用金刚石对顶砧技术,采用NaCl固体、甲醇-乙醇-水混合液体(16∶3∶1)和甲醇-乙醇混合液体(4∶1)做传压介质,开展了PbCO3的高压拉曼实验,最高压强分别达到24.5、25.0和67.0 GPa。研究发现,PbCO3在10、15和30 GPa左右发生相变,在静水压强条件下${\rm{CO}}_3^{2-} $基团的ν2-外弯曲振动模出现了软化现象。通过对比得到不同传压介质中PbCO3的Grüneisen参数γ,发现相变机制略有不同,并且压强对晶格振动的影响比${\rm{CO}}_3^{2-} $基团的影响大,这是由Pb2+―O键的键长较大造成的。在所研究的压强范围内,PbCO3没有发生分解或非晶化,30.0 GPa以上出现的PbCO3-Ⅳ相直至67.0 GPa都很稳定。

     

  • 图  PbCO3样品的XRD谱与标准谱对比

    Figure  1.  Comparison of the XRD spectra of PbCO3with the standard spectra

    图  采用NaCl固体传压介质时的PbCO3高压拉曼光谱

    Figure  2.  High pressure Raman spectra of PbCO3 in solid NaCl pressure transmitting medium

    图  采用NaCl固体做传压介质时PbCO3的拉曼峰位移与压强之间的关系(ν1、ν2和ν4分别对应对称拉伸振动模、外弯曲振动模和内弯曲振动模)

    Figure  3.  Pressure-induced mode shifts of PbCO3 undergoes the solid NaCl pressure transmitting medium (ν1, ν2 and ν4 are symmetric stretching vibration, out-of-plane bending vibration, and in-plane bending vibration, respectively.)

    图  采用甲醇-乙醇-水混合液体作为传压介质时的PbCO3高压拉曼光谱

    Figure  4.  High pressure Raman spectra of PbCO3 in mixture of MEW pressure transmitting medium

    图  采用甲醇-乙醇-水混合液体作为传压介质时PbCO3的拉曼峰位移与压强之间的关系(ν1、ν2和ν4分别对应对称拉伸振动模、外弯曲振动模和内弯曲振动模)

    Figure  5.  Pressure-induced mode shifts of PbCO3 undergoes the mixture of MEW pressure transmitting medium (ν1, ν2 and ν4 are symmetric stretching vibration, out-of-plane bending vibrations, and in-plane bending vibration, respectively.)

    图  采用甲醇-乙醇混合液体做传压介质时PbCO3的高压拉曼光谱

    Figure  6.  High pressure Raman spectra of PbCO3 in mixture of methanol-ethanol pressure transmitting medium

    图  采用甲醇-乙醇混合液体做传压介质时PbCO3的拉曼峰位移与压强之间的关系(ν1、ν2、ν4分别为对称拉伸振动模、外弯曲振动模和内弯曲振动模)

    Figure  7.  Pressure-induced mode shifts undergoes the mixture of methanol-ethanol pressure transmitting medium (ν1, ν2 and ν4 are symmetric stretching vibration, out-of-plane bending vibration, and in-plane bending vibration, respectively.)

    表  1  采用NaCl固体做传压介质时PbCO3-Ⅰ相的拉曼峰对应的位置、dν/dp${{\gamma}}$

    Table  1.   Raman modes and the values of dν/dp and mode Grüneisen parameters (${{\gamma}}$) for PbCO3-Ⅰ phase in solid NaCl pressure transmitting medium

    ${\nu }{_{\mathrm{i}0}}$/cm−1Pressure range/GPa$\dfrac{\mathrm{d}\nu }{\mathrm{d}p} \Big/({\rm{cm} }{^{-1} }\cdot {\rm{GPa} }{^{-1} })$$\gamma $
    1095.81 0–10.72.3($\pm 0.12$)0.1352
    842.900–10.5−1.2($ \pm 0.05 $) −0.0876
    686.870–10.71.4($ \pm 0.04 $)0.1312
    692.780–10.71.6($ \pm 0.07) $0.1491
    705.850–10.72.1($ \pm 0.03 $)0.1907
    711.860–9.6 1.5($ \pm 0.05 $)0.1430
    116.790–10.51.1($ \pm 0.04 $)0.6875
    143.790–9.5 1.7$ (\pm 0.03) $0.8219
    188.750–10.53.5$ (\pm 0.04) $1.4573
    173.720–10.53.8($ \pm 0.06 $)1.3780
    219.500–9.8 7.3$ (\pm 0.06) $2.0950
    下载: 导出CSV

    表  2  采用NaCl固体做传压介质时PbCO3-Ⅱ相的拉曼峰对应的位置、dν/dp${{ \gamma }}$

    Table  2.   Raman modes and the values of dν/dp and mode Grüneisen parameters (${{\gamma}}$) for PbCO3-Ⅱ phase in solid NaCl pressure transmitting medium

    ${\nu }{_{\mathrm{i}0}}$/cm−1Pressure range/GPa$\dfrac{\mathrm{d}\nu }{\mathrm{d}p} \Big/({\rm{cm} }{^{-1} }\cdot {\rm{GPa} }{^{-1} })$$\gamma $
    1147.20 10.7–15.62.2($ \pm 0.12$)0.0924
    1109.28 15.6–16.00.7($\pm 0.06$)0.0282
    825.7510.5–15.6−1.2($ \pm 0.05 $) −0.0675
    858.3410.5–15.6−0.9($ \pm 0.04 $) −0.0471
    723.0110.7–15.61.4($ \pm 0.08 $)0.0991
    725.5010.7–15.61.6($ \pm 0.07) $0.1060
    749.3210.7–15.62.1($ \pm 0.03 $)0.1341
    144.5610.5–15.61.1($ \pm 0.04 $)0.3945
    240.8310.5–15.64.6($ \pm 0.07) $1.3200
    229.5610.5–14.73.4$ (\pm 0.03) $0.2765
    223.3810.5–15.61.8$ (\pm 0.04) $0.4238
    354.5810.5–14.28.9($ \pm 0.06 $)1.7900
    下载: 导出CSV

    表  3  采用甲醇-乙醇-水混合溶液做传压介质时PbCO3-Ⅰ相的拉曼峰对应的位置、dν/dp${{\gamma}}$

    Table  3.   Raman modes and the values of dν/dp and mode Grüneisen parameters (${{\gamma}}$) for PbCO3-Ⅰ phase in the mixture of MEW pressure transmitting medium

    ${\nu }{_{\mathrm{i}0}}$/cm−1Pressure range/GPa$\dfrac{\mathrm{d}\nu }{\mathrm{d}p} \Big/({\rm{cm} }{^{-1} }\cdot {\rm{GPa} }{^{-1} })$$\gamma $
    1094.30 0–10.52.2($ \pm0.12 $)0.1293
    839.560–10.5−1.5($\pm 0.05$) −0.1126
    687.660–10.51.5($ \pm 0.04 $)0.1410
    691.930–10.51.5($ \pm 0.01) $0.1055
    702.070–10.51.7($ \pm 0.03 $)0.1177
    718.650–10.52.1($ \pm 0.05 $)0.1368
    116.600–10.51.1($ \pm 0.04 $)0.5057
    146.73 0–9.5 1.9$ (\pm 0.03) $0.7115
    216.780–10.76.2$ (\pm 0.04) $1.8627
    236.420–10.75.8$ (\pm 0.06 $)1.5516
    219.500–9.5 8.1$ (\pm 0.06) $1.7100
    下载: 导出CSV

    表  4  采用甲醇-乙醇-水混合溶液做传压介质时PbCO3-Ⅱ相的拉曼峰对应的位置、dν/dp${{\gamma}}$

    Table  4.   Raman modes and the values of dν/dp and mode Grüneisen parameters (${{\gamma}}$) for PbCO3-Ⅱ phase in the mixture of MEW pressure transmitting medium

    ${\nu }{_{\mathrm{i}0}}$/cm−1Pressure range/GPa$\dfrac{\mathrm{d}\nu }{\mathrm{d}p} \Big/({\rm{cm} }{^{-1} }\cdot {\rm{GPa} }{^{-1} })$$\gamma $
    1177.48 10.5–15.63.4($ \pm 0.12$)0.0420
    1109.79 14.6–24.20.6($\pm 0.06$)0.0239
    803.9010.5–15.6−1.5($\pm 0.06$) −0.0821
    847.2714.6–15.6−1.1($ \pm 0.04 $) 0.0604
    698.6010.5–15.60.5($ \pm 0.04 $)0.0334
    775.9010.5–15.63.5($ \pm 0.07) $0.2329
    798.6710.5–15.63.9($ \pm 0.03 $)0.2586
    148.6910.5–15.61.3($ \pm 0.04 $)0.5200
    181.7015.6–15.61.6($ \pm 0.07) $0.5290
    332.0910.5–15.66.8($ \pm 0.07) $1.8720
    307.0610.5–15.66.8$ (\pm 0.03) $2.1950
    395.8010.5–15.66.4($ \pm 0.06 $)1.2210
    下载: 导出CSV

    表  5  采用甲醇-乙醇混合溶液做传压介质时PbCO3-Ⅰ相的拉曼峰对应的位置、dν/dp${{\gamma}}$

    Table  5.   Raman modes and the values of dν/dp and mode Grüneisen parameters (${{\gamma}}$) for PbCO3-Ⅰ phase in the mixture of methanol-ethanol pressure transmitting medium

    ${\nu }{_{\mathrm{i}0}}$/cm−1Pressure range/GPa$\dfrac{\mathrm{d}\nu }{\mathrm{d}p} \Big/({\rm{cm} }{^{-1} }\cdot {\rm{GPa} }{^{-1} })$$\gamma $
    1088.20 0–10.01.7($ \pm 0.12$)0.0990
    847.630–9.5 −0.8($\pm 0.06$) −0.0589
    868.450–9.5 −0.7($ \pm 0.04 $) −0.0503
    674.650–10.00.3($ \pm 0.04 $)0.0281
    690.660–9.5 1.5($ \pm 0.07) $0.1398
    692.350–9.5 0.9($ \pm 0.03 $)0.0838
    110.700–10.00.6($ \pm 0.04 $)0.3673
    162.670–9.5 3.6($ \pm 0.07) $1.7964
    190.300–10.03.9$ (\pm 0.03) $1.6220
    192.440–7.8 2.4($ \pm 0.06 $)0.8703
    286.000–9.5 7.1$ (\pm 0.06) $2.0378
    下载: 导出CSV

    表  6  采用甲醇-乙醇混合溶液做传压介质时PbCO3-Ⅱ相的拉曼峰对应的位置、dν/dp${{\gamma}}$

    Table  6.   Raman modes and the values of dν/dp and mode Grüneisen parameters (${{\gamma}}$) for PbCO3-Ⅱ phase in the mixture of methanol-ethanol pressure transmitting medium

    ${\nu }{_{\mathrm{i}0}}$/cm−1Pressure range/GPa$\dfrac{\mathrm{d}\nu }{\mathrm{d}p} \Big/({\rm{cm} }{^{-1} }\cdot {\rm{GPa} }{^{-1} })$$\gamma $
    1124.78 10.0–15.41.7($ \pm 0.12$)0.0710
    824.8810.0–15.4−0.8($\pm 0.06$) −0.0439
    856.8914.2–29.0−0.7($ \pm 0.04 $) 0.0367
    691.9210.0–15.40.3($ \pm 0.04 $)0.0200
    715.7010.0–15.41.5($ \pm 0.07) $0.0995
    706.6010.0–15.40.9($ \pm 0.03 $)0.0592
    126.1910.0–15.40.6($ \pm 0.04 $)0.2402
    207.5110.0–15.43.6($ \pm 0.07) $1.1100
    178.5010.0–15.43.9$ (\pm 0.03) $1.0050
    248.3210.0–15.42.4($ \pm 0.06 $)0.5223
    下载: 导出CSV

    表  7  采用甲醇-乙醇混合溶液做传压介质时PbCO3-Ⅲ相的拉曼峰对应的位置、dν/dp${{\gamma}}$

    Table  7.   Raman modes and the values of dν/dp and mode Grüneisen parameters (${{\gamma}}$) for PbCO3-Ⅲ phase in the mixture of methanol-ethanol pressure transmitting medium

    ${\nu }{_{\mathrm{i}0}}$/cm−1Pressure range/GPa$\dfrac{\mathrm{d}\nu }{\mathrm{d}p} \Big/({\rm{cm} }{^{-1} }\cdot {\rm{GPa} }{^{-1} })$$\gamma $
    1278.87 15.4–30.22.1($\pm 0.12$)0.2326
    1205.66 15.4–30.21.3($\pm 0.03$)0.1623
    810.9515.4–30.2−0.2($\pm 0.06$) −0.0395
    845.1715.4–30.2−0.2($ \pm 0.04 $) −0.0390
    694.3315.4–30.20.5($ \pm 0.07 $)0.1018
    898.3715.4–30.22.8($ \pm 0.07) $0.5183
    912.6015.4–30.22.6($ \pm 0.03 $)0.4767
    187.6015.4–30.20.8($ \pm 0.04 $)0.8090
    369.9615.4–30.22.2($ \pm 0.07) $1.2900
    280.1915.4–30.22.1($ \pm 0.06) $1.9164
    417.7715.4–30.22.5($\pm 0.05$)1.3500
    下载: 导出CSV

    表  8  几种碳酸盐矿物质的化学键键长对比

    Table  8.   Comparison of bond length of several carbonate minerals

    SampleBond length/ÅcV3Reference
    PbCO35.176 6.158 270.449 This study
    BaCO35.314 6.430 304.200 Ref.[21]
    CaCO34.96 5.74 226.70 Ref.[22]
    FeCO34.6861(3)15.362(2)292.15(5)Ref.[20]
    MgCO34.6255(3)14.987(2)277.69(4)Ref.[1920]
    下载: 导出CSV
  • [1] MCGETCHIN T R, BESANCON J R. Carbonate inclusions in mantle-derived pyropes [J]. Earth and Planetary Science Letters, 1973, 18(3): 408–410. doi: 10.1016/0012-821X(73)90096-4
    [2] KUSHIRO I. Carbonate-silicate reactions at high presures and possible presence of dolomite and magnesite in the upper mantle [J]. Earth and Planetary Science Letters, 1975, 28(2): 116–120. doi: 10.1016/0012-821X(75)90218-6
    [3] 宋文磊, 许成, 刘琼, 等. 火成碳酸岩的实验岩石学研究及对地球深部碳循环的意义 [J]. 地质论评, 2012, 58(4): 726–744. doi: 10.3969/j.issn.0371-5736.2012.04.014

    SONG W L, XU C, LIU Q, et al. Experimental petrological study of carbonatite and its significances on the earth deep carbon cycle [J]. Geological Review, 2012, 58(4): 726–744. doi: 10.3969/j.issn.0371-5736.2012.04.014
    [4] 穆巴拉克 • 木里提江. 碳酸盐的高温高压稳定性及碳循环问题的研究 [D]. 乌鲁木齐: 新疆大学, 2019.

    MUBARAK M. Study on high pressure and high temperature stability of carbonate and deep Earth’s carbon cycle [D]. Urumqi: Xinjiang University, 2019.
    [5] SANTILLÁN J, WILLIAMS Q, KNITTLE E. Dolomite-Ⅱ: a high-pressure polymorph of CaMg(CO3)2 [J]. Geophysical Research Letters, 2003, 30(2): 1054. doi: 10.1029/2002GL016018
    [6] MINCH R, PETERS L, EHM L, et al. Evidence for the existence of a PbCO3-Ⅱ phase from high pressure X-ray measurements [J]. Zeitschrift für Kristallographie, 2010, 225(4): 146–152. doi: 10.1524/zkri.2010.1194
    [7] GAO J, WU X, QIN S, et al. Pressure-induced phase transformations of PbCO3 by X-ray diffraction and Raman spectroscopy [J]. High Pressure Research, 2016, 36(1): 1–15. doi: 10.1080/08957959.2015.1118475
    [8] CATALLI K, SANTILLÁN J, WILLIAMS Q. A high pressure infrared spectroscopic study of PbCO3-cerussite: constraints on the structure of the post-aragonite phase [J]. Physics and Chemistry of Minerals, 2005, 32(5/6): 412–417. doi: 10.1007/s00269-005-0010-9
    [9] LIN C C, LIU L G. High pressure phase transformations in aragonite-type carbonates [J]. Physics and Chemistry of Minerals, 1997, 24(2): 149–157. doi: 10.1007/s002690050028
    [10] MINCH R, DUBROVINSKY L, KURNOSOV A, et al. Raman spectroscopic study of PbCO3 at high pressures and tempera-tures [J]. Physics and Chemistry of Minerals, 2010, 37(1): 45–56. doi: 10.1007/s00269-009-0308-0
    [11] KAMINSKII A A, BOHATÝ L, RHEE H, et al. Cerussite, PbCO3: a new stimulated Raman scattering (SRS)-active crystal with high-order Stokes and anti-Stokes lasing: on the 50th anniversary of the discovery of stimulated Raman scattering [J]. Laser & Photonics Reviews, 2013, 7(3): 425–431. doi: 10.1002/lpor.201200123
    [12] ZHANG Y F, LIU J, QIN Z X, et al. A high-pressure study of PbCO3 by XRD and Raman spectroscopy [J]. Chinese Physics C, 2013, 37(3): 038001. doi: 10.1088/1674-1137/37/3/038001
    [13] MAO H K, BELL P M. Crystal-field effects in spinel: oxidation states of iron and chromium [J]. Geochimica et Cosmochimica Acta, 1975, 39(6/7): 865–866. doi: 10.1016/0016-7037(75)90032-0
    [14] 徐济安. 金刚石砧高压实验中压强传递介质对实验的影响—镁铝榴石状态方程的实验测定 [J]. 高压物理学报, 1987, 1(2): 97–101. doi: 10.11858/gywlxb.1987.02.001

    XU J A. The effect of pressure transmitting medium on the high pressure experiments in diamond anvil cell (DAC): experimental measurement of the equation of state (EOS) of pyrope [J]. Chinese Journal of High Pressure Physics, 1987, 1(2): 97–101. doi: 10.11858/gywlxb.1987.02.001
    [15] 张书霞. 高温高压合成实验所用传压介质的研究 [D]. 成都: 四川大学, 2006.

    ZHANG S X. A study on pressure mediums for high pressure and high temperature experiment [D]. Chengdu: Sichuan University, 2006.
    [16] KIRSCHNER S M, WATSON J K G. Sextic centrifugal distortion of tetrahedral molecules [J]. Journal of Molecular Spectroscopy, 1973, 47(2): 347–350. doi: 10.1016/0022-2852(73)90018-0
    [17] YANG J, DENG W, LI Q, et al. Strength enhancement of nanocrystalline tungsten under high pressure [J]. Matter and Radiation at Extremes, 2020, 5(5): 058401. doi: 10.1063/5.0005395
    [18] CHEN B. Exploring nanomechanics with high-pressure techniques [J]. Matter and Radiation at Extremes, 2020, 5(6): 068104. doi: 10.1063/5.0032600
    [19] LAVINA B, DERA P, DOWNS R T, et al. Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition [J]. Geophysical Research Letters, 2009, 36(23): L23306. doi: 10.1029/2009GL039652
    [20] LIANG W, YIN Y, LI Z M, et al. Single crystal growth, crystalline structure investigation and high-pressure behavior of impurity-free siderite (FeCO3) [J]. Physics and Chemistry of Minerals, 2018, 45(9): 831–842. doi: 10.1007/s00269-018-0965-y
    [21] 穆巴拉克 • 木里提江, 艾尼瓦尔 • 吾术尔, 王静, 等. 碳酸钡在高温及高压下的相变行为 [J]. 材料导报, 2019, 33(12): 4062–4065.

    MOLUTJAN M, HUSHUR A, WANG J, et al. Phase transition of BaCO3 under high temperature and high pressure [J]. Materials Reports, 2019, 33(12): 4062–4065.
    [22] ONO S, KIKEGAWA T, OHISHI Y, et al. Post-aragonite phase transformation in CaCO3 at 40 GPa [J]. American Mineralogist, 2005, 90(4): 667–671. doi: 10.2138/am.2005.1610
  • 加载中
图(7) / 表(8)
计量
  • 文章访问数:  934
  • HTML全文浏览量:  585
  • PDF下载量:  53
出版历程
  • 收稿日期:  2021-06-15
  • 修回日期:  2021-07-06

目录

    /

    返回文章
    返回