High Pressure Raman Spectroscopic Study of PbCO3 in Different Pressure Transmitting Medium
-
摘要: 为研究PbCO3在高压下的稳定性,利用金刚石对顶砧技术,采用NaCl固体、甲醇-乙醇-水混合液体(16∶3∶1)和甲醇-乙醇混合液体(4∶1)做传压介质,开展了PbCO3的高压拉曼实验,最高压强分别达到24.5、25.0和67.0 GPa。研究发现,PbCO3在10、15和30 GPa左右发生相变,在静水压强条件下
CO2−3 基团的ν2-外弯曲振动模出现了软化现象。通过对比得到不同传压介质中PbCO3的Grüneisen参数γ,发现相变机制略有不同,并且压强对晶格振动的影响比CO2−3 基团的影响大,这是由Pb2+―O键的键长较大造成的。在所研究的压强范围内,PbCO3没有发生分解或非晶化,30.0 GPa以上出现的PbCO3-Ⅳ相直至67.0 GPa都很稳定。Abstract: Using diamond anvil cell (DAC) technique and Raman spectroscopy, we have studied the stability of PbCO3 at high pressure. Solid NaCl, mixture of methanol-ethanol-water (16∶3∶1) and methanol-ethanol (4∶1) were used as pressure transmitting medium. The highest pressure in this study reached up to 24.5, 25.0 and 67.0 GPa, respectively. It is found that PbCO3 undergoes three phase transitions at around 10, 15 and 30 GPa, respectively. In addition, the softening of the out of bending vibration mode belonging toCO2−3 group was observed. By comparison with the Grüneisen parameters (γ ) of PbCO3 in different pressure-transfer media, the phase transition mechanism is slightly different, and the influence of pressure on lattice vibration is greater than that ofCO2−3 group, which is attributed to the larger distance of the Pb2+—O bond. PbCO3 did not decompose or amorphized in the pressure range of 67.0 GPa, the highest pressure reached in this study. The observed PbCO3-Ⅳ phase above 30.0 GPa is stable up to 67.0 GPa.-
Key words:
- PbCO3 /
- Raman spectroscopy /
- pressure-transmitting medium /
- high pressure /
- phase transformation
-
碳纤维复合材料(carbon-fibre reinforced composites,CFRP)具有轻质、高强、高韧、耐腐蚀、耐高温、可设计性强等优异特性,在轨道交通、新能源、火箭导弹以及航空航天(如飞机蒙皮、高空飞艇、发动机等)等领域具有重要应用价值[1–2]。然而,在某些应用领域中,碳纤维复合材料面临极端服役环境,从而对其性能提出了极其严苛的要求。例如,作为飞机蒙皮或高空飞艇中的关键材料,碳纤维复合材料时常遭遇低温环境和结冰问题,不仅引起飞行器表面平整度、外形、气动布局的改变[3–4]以及重量的增加,导致不可预知的飞行问题,而且由于纤维与基体的热膨胀系数差异较大,在低温环境中还可能出现收缩不协调导致复合材料内部产生裂纹,进而引发灾难性破坏[5]。因此,调控碳纤维复合材料在低温环境下的力学性能,并实现其在低温环境下的除冰功能是非常必要的,这对于保障碳纤维复合材料结构件,尤其是应用于高空飞行器结构件中的碳纤维复合材料服役安全性具有重大意义。
在低温除冰方面,当前最常用的机翼除冰方法有热气除冰、化学除冰、机械除冰和电热除冰等[6–8]。热气除冰主要利用发动机的热气加热进行除冰,但是可能会降低发动机的推力。化学除冰是通过喷涂防冰液等进行除冰,例如,Xue等[9]开发出聚二甲基硅氧烷(PDMS)/TiO2纳米复合材料,将其作为牺牲层喷涂在基材上,一旦在超疏水表面形成冰,便会导致牺牲层自动脱离,达到除冰效果,但是这种方法存在涂层寿命较短、需要重复喷涂的问题。电加热除冰是将加热垫布置在需要保护的部件表面,以代替热气除冰,在其服役期间可重复利用。然而,现在的电加热除冰技术尚不成熟,在民用飞机上的应用较少,尤其是机翼表面很难布置加热垫,因此需要进一步深入研究。
不锈钢超薄带,又名手撕钢(hand-torn steel,HTS),是一种强度高、柔韧性良好、导电率高的金属材料,在航天航空等高精尖领域具有重要应用[10]。手撕钢是一种各向同性材料,将手撕钢与碳纤维材料复合,有望弥补各向异性碳纤维层合板在某些方向上的性能短板,从而有效地增强碳纤维复合材料的综合力学性能。此外,手撕钢作为即时发热材料,将其与碳纤维材料复合不仅能够实现其整体温度调控,改善材料在低温服役环境下的力学性能,而且通过发挥其致热功能,可能实现飞机机翼等结构件表面的快速除冰。将碳纤维与手撕钢相结合,形成碳纤维-金属复合材料,发挥纤维和金属的优点,不仅可以实现飞行器的轻量化设计,还能够有效避免飞行器因表面结构件结冰而造成的安全事故。
目前,学者们已经对纤维-金属层合板进行了相关研究[11–13]。例如,李艳[11]采用阳极氧化法和热压成型法制备碳纤维金属铝层合板和碳纤维金属钛层合板,结果表明碳纤维金属钛层合板相比碳纤维金属铝层合板具有更好的力学性能,这是由添加金属种类所决定的。马其华等[12]制备了金属-CFRP混合管,发现CFRP与金属管相互协调可提升整体的承载能力,改善整个混合结构的能量吸收能力。研究表明,温度对纤维复合材料的力学性能有一定程度的影响[14–15]。然而,已有研究主要针对纤维-金属复合材料在常温环境下的力学性能,对于纤维-金属复合材料的电流驱动温度调节方案,及其在电流致热效应调控下的力学性能和除冰功能尚缺乏深入研究。
为此,本研究通过设计和裁剪不同形状的手撕钢,采用铺层固化方法制备“碳纤维预浸料”、“碳纤维预浸料-未裁剪手撕钢”和“碳纤维预浸料-弓字形手撕钢”3种复合材料,通过通电致热试验、三点弯曲性能测试和通电致热除冰测试,探索电流通路和电流强度引起的致热效应对复合材料力学性能和除冰功能的影响,以期为低温服役环境下碳纤维复合材料的力学性能优化和除冰功能实现提供指导,研究结果有望在航天航空等领域得到重要应用。
1. 样品制备
1.1 主要实验原料
本研究采用的CFRP为T300单向碳纤维增强环氧树脂薄层预浸料,型号为USN 20000(碳纤维与环氧树脂的质量比为6∶4),购自威海光威集团有限责任公司;手撕钢超薄带购自上海宏伟有限公司。材料参数如表1所示。
表 1 材料的基本属性Table 1. Basic material propertiesMaterial Tensile strength/MPa Density/(g·cm−3) Thickness/mm HTS 1130 7.26 0.02 CFRP 1800 1.80 0.20 1.2 三点弯曲样品制备
为了研究电流致热效应对材料力学性能的影响,将加热层与支撑层合并,即采用2层碳纤维预浸料和1层手撕钢交替叠层铺设,共11层,如图1(a)所示,其中预浸料采用单向铺层。加热层手撕钢起支撑和通电加热作用,另外两层手撕钢则主要起支撑作用。
根据三点弯曲测试标准《纤维金属层板弯曲性能试验方法》(GB/T 41049—2021),将样品尺寸设计为15 mm×80 mm,对加热层手撕钢进行裁剪处理,形成宽度约为3 mm的“弓字形”电流加热通路,如图1(b)所示。采用铺层固化方法制备样品:(1) 将碳纤维预浸料和手撕钢裁剪成合适的尺寸并解冻6 h;(2) 按照铺层方案逐层铺设样品;(3) 将样品进行模压和抽真空消泡处理,并在干燥箱中高温固化,干燥箱中的温度先以1~2 ℃/min的速率由室温升至120 ℃并保温90 min,然后以1~2 ℃/min的速率降至60 ℃以下进行脱模处理。所有样品均采用相同的制备工艺。最终制备出“碳纤维预浸料”、“碳纤维预浸料-未裁剪手撕钢”和“碳纤维预浸料-弓字形手撕钢”3组样品,如图1(c)所示。
1.3 通电致热除冰样品制备
按照图2(a)所示形状将手撕钢裁剪成“弓字形”,以研究电流通路宽度(a)对致热效应的影响。为获取加热层温度,按照图1(a)中第3~11层方案,制备尺寸为100 mm×100 mm的层合板,如图2(b)~图2(f)所示,其中a分别为5、10、15和20 mm。此外,为了验证除冰功能,按照图1(a)中第1~11层方案制备电流通路宽度为10 mm的样品。
2. 实验测试
对制备的样品进行测试,先对碳纤维-弓字形手撕钢长方形层合板通入不同的电流,测试其力学性能,然后对正方形层合板进行通电致热和除冰功能测试。
2.1 通电致热和三点弯曲测试
为研究电流强度对材料力学性能的影响,将样品接入电路中通电加热,如图3(a)所示,通过调压器(型号TDGC2-0.5 kVA)控制输出电压,调控样品中的电流大小(见表2),利用红外热成像仪(型号FLIR C2,测量误差±2 ℃,测量范围−20~180 ℃)采集样品表面温度数据,当样品表面温度达到稳态后,采用石棉对样品进行保温处理,然后断电,并立即在万能试验机(型号STD5000)上进行三点弯曲性能测试(如图3(b)所示),并与碳纤维预浸料-未裁剪手撕钢样品进行对比。测试中,跨距为40 mm,加载速率为2 mm/min,每组样品进行3次测试,最终测试结果为多次测量的平均值。
表 2 三点弯曲样品通电方案Table 2. Three-point bending sample energization schemeSamples Current/A CFRP No power HTS-CFRP No power Cut HTS-CFRP 0, 0.5, 1.0, 1.5 2.2 电流致热除冰升温特性测试
为测试碳纤维预浸料-弓字形手撕钢复合材料的电流致热除冰功能,将样品接入如图3(a)所示的电路中,调节调压器,使样品中的电流依次增大(间隔约为0.5 A),通电方案见表3,利用红外热成像仪测量样品表面温度,记录样品在不同电流下的稳态温度。此外,对电流通路宽度为10 mm的11层除冰验证样品的升温过程和除冰功能进行测试。
表 3 电流致热样品通电方案Table 3. Energizing samples with current heatingWidth of hand-torn steel/mm Current/A 20 0, 0.5, 1.0, 1.5, 2.0, 2.5 15 0, 0.5, 1.0, 1.5, 2.0, 2.5 10 0, 0.5, 1.0, 1.5, 2.0, 2.5 5 0, 0.5, 1.0, 1.5, 1.8 3. 结果与讨论
3.1 电流通路和电流强度对复合材料力学性能的影响
对3种复合材料在未通电条件下进行三点弯曲性能测试,结果如图4所示。本研究主要考虑比强度和比吸能两方面因素,其中,比强度是材料的强度与其表观密度之比,而比吸能ESA的计算公式为
ESA=∫x00Fmdx (1) 式中:F为三点弯曲载荷;x为压头位移;x0为破坏位移(载荷下降30%对应的压头位移);m为样品的表观密度,纯碳纤维预浸料、碳纤维预浸料-未裁剪手撕钢、碳纤维预浸料-弓形手撕钢复合材料的表观密度分别为1.80、2.03、2.02 g/cm3。图4(a)表明,3种复合材料的应力-应变曲线变化趋势相同,达到弯曲强度后,载荷迅速下降,复合材料发生破坏。由图4(b)和图4(c)可知:与纯碳纤维预浸料复合材料相比,碳纤维预浸料-未裁剪手撕钢复合材料的比强度有所提升(由0.817 N·m/kg提升至0.876 N·m/kg),但是比吸能有所降低(由412.9 J/kg降低为359.2 J/kg),碳纤维预浸料-弓字形手撕钢复合材料的比强度虽然有所降低(由0.817 N·m/kg降为0.733 N·m/kg),但是破坏应变显著增大,延缓了复合材料的破坏,从而使其比吸能略有提升(由412.9 J/kg提升为414.6 J/kg)。对比碳纤维预浸料-未裁剪手撕钢复合材料与碳纤维预浸料-弓字形手撕钢复合材料,可以看出,后者的比强度降低,但比吸能提高。这说明加入未裁剪的手撕钢可显著提升碳纤维预浸料复合材料的强度,加入裁剪的手撕钢可在一定程度上提升碳纤维预浸料复合材料的韧性。下面将对该实验结果进行进一步的机理分析。
在纯碳纤维预浸料复合材料的基础上添加未裁剪手撕钢后,比强度得到提升,而添加裁剪手撕钢后比强度有所降低,这可能是由于:(1) 手撕钢具有良好的强度和柔性,有助于提升复合材料的整体强度;(2) 与碳纤维预浸料不同的是(沿纤维方向的承载能力显著高于垂直纤维方向的承载能力),手撕钢是各向同性材料,能够很好地承载并传递层间应力,从而使其整体强度得到提升;(3) 裁剪后的手撕钢由于相邻通路间含有间隙,间隙处无法承受和传递载荷,且材料质量增加,致使其比强度有所降低。
从吸能方面来看,碳纤维预浸料-弓字形手撕钢层合板的比吸能显著提升,而碳纤维预浸料-未裁剪手撕钢层合板的比吸能有所降低,其原因可能是:(1) 对于碳纤维预浸料-未裁剪手撕钢层合板,虽然强度得到提高,但是极限应变减低(手撕钢的极限应变低于碳纤维预浸料的极限应变),且质量增加导致其比吸能降低;(2) 对于碳纤维预浸料-弓字形手撕钢层合板,裁剪手撕钢留下间隙,此处的碳纤维预浸料将在固化过程中结合到一起,从而在材料破坏过程中形成更多的断裂面,提高材料的能量吸收特性。
上述分析表明,碳纤维预浸料-弓字形手撕钢层合板与纯碳纤维预浸料层合板相比,比强度降低,比吸能显著提升,即可以在一定程度上延缓层合板的破坏,同时吸收更多能量以发挥其承载和防护作用。下面对碳纤维预浸料-手撕钢复合材料在不同电流作用下的力学性能做进一步研究。
分别对碳纤维预浸料-弓字形手撕钢层合板在不同电流强度下的力学性能进行测试,并与碳纤维预浸料-未裁剪手撕钢层合板(不通电)的力学性能进行对比分析,结果如图5所示。可以看出,通电后碳纤维预浸料-弓字形手撕钢层合板的比强度和比吸能提高,但是随着电流强度增加,比强度和比吸能降低。通电不仅能够提升碳纤维预浸料-手撕钢复合材料的强度,而且增大破坏时的极限应变,使其在破坏过程中吸收更多的能量,例如: 通入0.5 A的电流后,比强度大幅提升(由0.733 N·m/kg提高至0.957 N·m/kg),甚至超过了碳纤维预浸料-未裁剪手撕钢层合板,且变形伸长量较大,通电后碳纤维预浸料-弓字形手撕钢层合板的比吸能显著提升(由414.6 J/kg降低为579.4 J/kg),相对于纯碳纤维预浸料层合板,比强度和比吸能分别提升17.2% 和40.3%。这可能是由于通电后样品温度上升,达到一定温度时预浸料中的环氧树脂基体发生链段重排并进一步固化,导致环氧树脂分子链的交联密度增加[14],增强了碳纤维与树脂之间的结合强度,从而提高了结构整体的强度和能量吸收能力。但是,随着电流强度的增加,样品温度过高会引起部分分子链断裂[15],从而降低层合板的强度和能量吸收特性。因此,需要选择合适的电流,以满足实际应用中对层合板强度和吸能特性的要求。
综上所述,在纯碳纤维预浸料中加入手撕钢会提升材料的力学性能,添加经过裁剪处理的手撕钢后,与由纯碳纤维预浸料制备的样品相比,虽然比强度有所下降,但是比吸能显著提升。通电对于碳纤维-手撕钢复合材料的力学性能也有重要影响,通过调控电流强度可实现强度和能量吸收特性的优化。
3.2 碳纤维-手撕钢层合板的电流致热除冰功能
为了实现碳纤维-手撕钢层合板电流致热除冰功能,测试得到具有不同电流通路宽度(“弓”字形手撕钢宽度)的碳纤维-手撕钢层合板在通电后的稳态温度,结果如图6所示。由图6(a)可知,随着电流通路宽度的减小,表面温度的上升趋势存在一定的差异。其中:碳纤维预浸料-未裁剪手撕钢样品通入电流后,温度几乎不变,可能是由于整片手撕钢的电阻很小,导致发热功率很小,样品表面升温过程和散热过程几乎处于动态平衡状态,因此表面温度基本维持在某一稳定值;碳纤维预浸料-弓字形手撕钢样品的电阻显著增大,通电后样品表面温度随着电流增加而升高。
此外,还发现当电流一定时,随着电流通路宽度的减小,样品表面稳态温度逐渐升高,样品表面温度场逐渐均匀。当电流达到2.5 A时,电流通路宽度为20、15、10 mm的样品的表面温度分别达到65.7、78.5、101.0 ℃,如图6(b)~图6(d)所示。需要说明的是,当电流通路宽度为5 mm时,未能完成电流为2.5 A的实验,这是因为随着电流的增大,温度迅速上升,当电流为1.6 A时,样品表面温度达到152.0 ℃,如图6(e)所示,当电流达到1.8 A时,温度超过180 ℃,且一段时间后样品发生变形损坏。图6(b)~图6(e)的结果表明:当手撕钢宽度为15和20 mm时,温度场分布均较为分散,且温度提升缓慢,不利于大面积除冰;随着电流通路宽度减小,样品表面温度场趋于均匀;当手撕钢宽度为5和10 mm时,温度场分布较为均匀,可以实现大面积除冰。结合3.1节的力学性能分析,可以发现:碳纤维预浸料-弓字形手撕钢层合板中的裂纹或缺陷增加,导致力学性能下降;电流通路为10 mm的碳纤维-手撕钢层合板相比于其他层合板能够在保证良好力学性能的情况下,达到大面积除冰效果。
在2.5 A的电流下,电流通路宽度为10 mm的样品的加热功率为2 kW/m2,其温度变化过程如图7(a)~图7(f)所示。可见,接通电路后,样品表面温度迅速提升到49 ℃,如图7(a)所示,但初始热量分布不均匀;随着时间的延长,样品表面温度变化逐渐减缓;40 s时最高温度达到86.6 ℃,如图7(d)所示,样品表面高温区域趋于均匀;120 s时,最高温度基本稳定在94.9 ℃,样品中间区域的温度相对均匀,更有利于大范围除冰。此外,将边长约为15 mm的冰块置于样品表面,大约5 min后冰块完全融化,表明手撕钢铺层材料具有很好的除冰功能。
上述针对碳纤维-手撕钢复合材料的电流致热除冰功能研究表明,不同电流通路宽度对复合材料电流致热功能具有重要影响,电流通路宽度减小,复合材料在相同电流下的致热效应提升,可用来通电致热除冰。此外,电流强度对于碳纤维-手撕钢复合材料的致热效应也有重要影响,增加电流强度会引起复合材料温度过高,可能引起材料破坏失效。通过调控手撕钢尺寸,在碳纤维-手撕钢复合材料的力学性能与除冰功能之间找到平衡点。实验表明,手撕钢宽度为10 mm的碳纤维-手撕钢复合材料可以在不降低材料性能的基础上实现通电除冰的目的。
4. 结论与展望
设计和制备了碳纤维预浸料、碳纤维预浸料-手撕钢、碳纤维预浸料-弓字形手撕钢3种复合材料,通过通电实验和三点弯曲测试,获得了手撕钢电流通路和电流强度对复合材料力学性能的影响,据此设计了具有不同电流通路宽度的碳纤维-手撕钢复合材料,研究了其电流致热除冰功能,得到如下结论。
(1) 在纯碳纤维预浸料层合板中加入未裁剪手撕钢会提升比强度,加入弓字形手撕钢会在比强度有所降低的情况下提升能量吸收特性。电流强度对碳纤维-手撕钢复合材料的力学性能也有重要影响,施加电流时,其比强度和比吸能显著提升。因此,在实际应用过程中,可通过调节电流强度优化复合材料的强度和能量吸收特性,以满足不同领域对复合材料力学性能的要求,从而为该类复合材料的应用提供积极指导。
(2) 碳纤维-手撕钢复合材料的电流致热除冰特性与其中手撕钢的电流通路宽度有密切联系。随着电流通路宽度的减小,相同电流强度下复合材料的致热温度及其均匀性提高,但是随着电流强度提升,致热温度过高会引起层合板破坏失效。通过调控手撕钢的尺寸,可以平衡其力学性能和除冰功能。相对于其他尺寸,电流通路宽度为10 mm的碳纤维-手撕钢层合板在保证材料性能和安全性的前提下,实现通电致热和快速除冰。这对于碳纤维-金属复合材料的结构设计和功能应用提供了参考依据,并有望在航天航空等领域得到应用。
本研究对于电流强度和电流通路宽度变化下复合材料的测试次数较少,实验环境为室温,且仅对比了复合材料的强度和吸能,研究结果具有一定的局限性。后续研究将细化电流通路宽度和电流强度,同时对刚度等其他重要力学性能进行分析,结合实际应用场景,增加风洞试验,研究复合材料在不同条件下的力学性能和致热效果,实现金属-碳纤维层合板力学性能和功能特性优化。
-
图 3 采用NaCl固体做传压介质时PbCO3的拉曼峰位移与压强之间的关系(ν1、ν2和ν4分别对应对称拉伸振动模、外弯曲振动模和内弯曲振动模)
Figure 3. Pressure-induced mode shifts of PbCO3 undergoes the solid NaCl pressure transmitting medium (ν1, ν2 and ν4 are symmetric stretching vibration, out-of-plane bending vibration, and in-plane bending vibration, respectively.)
图 5 采用甲醇-乙醇-水混合液体作为传压介质时PbCO3的拉曼峰位移与压强之间的关系(ν1、ν2和ν4分别对应对称拉伸振动模、外弯曲振动模和内弯曲振动模)
Figure 5. Pressure-induced mode shifts of PbCO3 undergoes the mixture of MEW pressure transmitting medium (ν1, ν2 and ν4 are symmetric stretching vibration, out-of-plane bending vibrations, and in-plane bending vibration, respectively.)
图 7 采用甲醇-乙醇混合液体做传压介质时PbCO3的拉曼峰位移与压强之间的关系(ν1、ν2、ν4分别为对称拉伸振动模、外弯曲振动模和内弯曲振动模)
Figure 7. Pressure-induced mode shifts undergoes the mixture of methanol-ethanol pressure transmitting medium (ν1, ν2 and ν4 are symmetric stretching vibration, out-of-plane bending vibration, and in-plane bending vibration, respectively.)
表 1 采用NaCl固体做传压介质时PbCO3-Ⅰ相的拉曼峰对应的位置、dν/dp和
γ Table 1. Raman modes and the values of dν/dp and mode Grüneisen parameters (
γ ) for PbCO3-Ⅰ phase in solid NaCl pressure transmitting mediumνi0/cm−1 Pressure range/GPa dνdp/(cm−1⋅GPa−1) γ 1095.81 0–10.7 2.3(±0.12) 0.1352 842.90 0–10.5 −1.2(±0.05) −0.0876 686.87 0–10.7 1.4(±0.04) 0.1312 692.78 0–10.7 1.6(±0.07) 0.1491 705.85 0–10.7 2.1(±0.03) 0.1907 711.86 0–9.6 1.5(±0.05) 0.1430 116.79 0–10.5 1.1(±0.04) 0.6875 143.79 0–9.5 1.7(±0.03) 0.8219 188.75 0–10.5 3.5(±0.04) 1.4573 173.72 0–10.5 3.8(±0.06) 1.3780 219.50 0–9.8 7.3(±0.06) 2.0950 表 2 采用NaCl固体做传压介质时PbCO3-Ⅱ相的拉曼峰对应的位置、dν/dp和
γ Table 2. Raman modes and the values of dν/dp and mode Grüneisen parameters (
γ ) for PbCO3-Ⅱ phase in solid NaCl pressure transmitting mediumνi0/cm−1 Pressure range/GPa dνdp/(cm−1⋅GPa−1) γ 1147.20 10.7–15.6 2.2(±0.12) 0.0924 1109.28 15.6–16.0 0.7(±0.06) 0.0282 825.75 10.5–15.6 −1.2(±0.05) −0.0675 858.34 10.5–15.6 −0.9(±0.04) −0.0471 723.01 10.7–15.6 1.4(±0.08) 0.0991 725.50 10.7–15.6 1.6(±0.07) 0.1060 749.32 10.7–15.6 2.1(±0.03) 0.1341 144.56 10.5–15.6 1.1(±0.04) 0.3945 240.83 10.5–15.6 4.6(±0.07) 1.3200 229.56 10.5–14.7 3.4(±0.03) 0.2765 223.38 10.5–15.6 1.8(±0.04) 0.4238 354.58 10.5–14.2 8.9(±0.06) 1.7900 表 3 采用甲醇-乙醇-水混合溶液做传压介质时PbCO3-Ⅰ相的拉曼峰对应的位置、dν/dp和
γ Table 3. Raman modes and the values of dν/dp and mode Grüneisen parameters (
γ ) for PbCO3-Ⅰ phase in the mixture of MEW pressure transmitting mediumνi0/cm−1 Pressure range/GPa dνdp/(cm−1⋅GPa−1) γ 1094.30 0–10.5 2.2(±0.12) 0.1293 839.56 0–10.5 −1.5(±0.05) −0.1126 687.66 0–10.5 1.5(±0.04) 0.1410 691.93 0–10.5 1.5(±0.01) 0.1055 702.07 0–10.5 1.7(±0.03) 0.1177 718.65 0–10.5 2.1(±0.05) 0.1368 116.60 0–10.5 1.1(±0.04) 0.5057 146.73 0–9.5 1.9(±0.03) 0.7115 216.78 0–10.7 6.2(±0.04) 1.8627 236.42 0–10.7 5.8(±0.06) 1.5516 219.50 0–9.5 8.1(±0.06) 1.7100 表 4 采用甲醇-乙醇-水混合溶液做传压介质时PbCO3-Ⅱ相的拉曼峰对应的位置、dν/dp和
γ Table 4. Raman modes and the values of dν/dp and mode Grüneisen parameters (
γ ) for PbCO3-Ⅱ phase in the mixture of MEW pressure transmitting mediumνi0/cm−1 Pressure range/GPa dνdp/(cm−1⋅GPa−1) γ 1177.48 10.5–15.6 3.4(±0.12) 0.0420 1109.79 14.6–24.2 0.6(±0.06) 0.0239 803.90 10.5–15.6 −1.5(±0.06) −0.0821 847.27 14.6–15.6 −1.1(±0.04) 0.0604 698.60 10.5–15.6 0.5(±0.04) 0.0334 775.90 10.5–15.6 3.5(±0.07) 0.2329 798.67 10.5–15.6 3.9(±0.03) 0.2586 148.69 10.5–15.6 1.3(±0.04) 0.5200 181.70 15.6–15.6 1.6(±0.07) 0.5290 332.09 10.5–15.6 6.8(±0.07) 1.8720 307.06 10.5–15.6 6.8(±0.03) 2.1950 395.80 10.5–15.6 6.4(±0.06) 1.2210 表 5 采用甲醇-乙醇混合溶液做传压介质时PbCO3-Ⅰ相的拉曼峰对应的位置、dν/dp和
γ Table 5. Raman modes and the values of dν/dp and mode Grüneisen parameters (
γ ) for PbCO3-Ⅰ phase in the mixture of methanol-ethanol pressure transmitting mediumνi0/cm−1 Pressure range/GPa dνdp/(cm−1⋅GPa−1) γ 1088.20 0–10.0 1.7(±0.12) 0.0990 847.63 0–9.5 −0.8(±0.06) −0.0589 868.45 0–9.5 −0.7(±0.04) −0.0503 674.65 0–10.0 0.3(±0.04) 0.0281 690.66 0–9.5 1.5(±0.07) 0.1398 692.35 0–9.5 0.9(±0.03) 0.0838 110.70 0–10.0 0.6(±0.04) 0.3673 162.67 0–9.5 3.6(±0.07) 1.7964 190.30 0–10.0 3.9(±0.03) 1.6220 192.44 0–7.8 2.4(±0.06) 0.8703 286.00 0–9.5 7.1(±0.06) 2.0378 表 6 采用甲醇-乙醇混合溶液做传压介质时PbCO3-Ⅱ相的拉曼峰对应的位置、dν/dp和
γ Table 6. Raman modes and the values of dν/dp and mode Grüneisen parameters (
γ ) for PbCO3-Ⅱ phase in the mixture of methanol-ethanol pressure transmitting mediumνi0/cm−1 Pressure range/GPa dνdp/(cm−1⋅GPa−1) γ 1124.78 10.0–15.4 1.7(±0.12) 0.0710 824.88 10.0–15.4 −0.8(±0.06) −0.0439 856.89 14.2–29.0 −0.7(±0.04) 0.0367 691.92 10.0–15.4 0.3(±0.04) 0.0200 715.70 10.0–15.4 1.5(±0.07) 0.0995 706.60 10.0–15.4 0.9(±0.03) 0.0592 126.19 10.0–15.4 0.6(±0.04) 0.2402 207.51 10.0–15.4 3.6(±0.07) 1.1100 178.50 10.0–15.4 3.9(±0.03) 1.0050 248.32 10.0–15.4 2.4(±0.06) 0.5223 表 7 采用甲醇-乙醇混合溶液做传压介质时PbCO3-Ⅲ相的拉曼峰对应的位置、dν/dp和
γ Table 7. Raman modes and the values of dν/dp and mode Grüneisen parameters (
γ ) for PbCO3-Ⅲ phase in the mixture of methanol-ethanol pressure transmitting mediumνi0/cm−1 Pressure range/GPa dνdp/(cm−1⋅GPa−1) γ 1278.87 15.4–30.2 2.1(±0.12) 0.2326 1205.66 15.4–30.2 1.3(±0.03) 0.1623 810.95 15.4–30.2 −0.2(±0.06) −0.0395 845.17 15.4–30.2 −0.2(±0.04) −0.0390 694.33 15.4–30.2 0.5(±0.07) 0.1018 898.37 15.4–30.2 2.8(±0.07) 0.5183 912.60 15.4–30.2 2.6(±0.03) 0.4767 187.60 15.4–30.2 0.8(±0.04) 0.8090 369.96 15.4–30.2 2.2(±0.07) 1.2900 280.19 15.4–30.2 2.1(±0.06) 1.9164 417.77 15.4–30.2 2.5(±0.05) 1.3500 表 8 几种碳酸盐矿物质的化学键键长对比
Table 8. Comparison of bond length of several carbonate minerals
-
[1] MCGETCHIN T R, BESANCON J R. Carbonate inclusions in mantle-derived pyropes [J]. Earth and Planetary Science Letters, 1973, 18(3): 408–410. doi: 10.1016/0012-821X(73)90096-4 [2] KUSHIRO I. Carbonate-silicate reactions at high presures and possible presence of dolomite and magnesite in the upper mantle [J]. Earth and Planetary Science Letters, 1975, 28(2): 116–120. doi: 10.1016/0012-821X(75)90218-6 [3] 宋文磊, 许成, 刘琼, 等. 火成碳酸岩的实验岩石学研究及对地球深部碳循环的意义 [J]. 地质论评, 2012, 58(4): 726–744. doi: 10.3969/j.issn.0371-5736.2012.04.014SONG W L, XU C, LIU Q, et al. Experimental petrological study of carbonatite and its significances on the earth deep carbon cycle [J]. Geological Review, 2012, 58(4): 726–744. doi: 10.3969/j.issn.0371-5736.2012.04.014 [4] 穆巴拉克 • 木里提江. 碳酸盐的高温高压稳定性及碳循环问题的研究 [D]. 乌鲁木齐: 新疆大学, 2019.MUBARAK M. Study on high pressure and high temperature stability of carbonate and deep Earth’s carbon cycle [D]. Urumqi: Xinjiang University, 2019. [5] SANTILLÁN J, WILLIAMS Q, KNITTLE E. Dolomite-Ⅱ: a high-pressure polymorph of CaMg(CO3)2 [J]. Geophysical Research Letters, 2003, 30(2): 1054. doi: 10.1029/2002GL016018 [6] MINCH R, PETERS L, EHM L, et al. Evidence for the existence of a PbCO3-Ⅱ phase from high pressure X-ray measurements [J]. Zeitschrift für Kristallographie, 2010, 225(4): 146–152. doi: 10.1524/zkri.2010.1194 [7] GAO J, WU X, QIN S, et al. Pressure-induced phase transformations of PbCO3 by X-ray diffraction and Raman spectroscopy [J]. High Pressure Research, 2016, 36(1): 1–15. doi: 10.1080/08957959.2015.1118475 [8] CATALLI K, SANTILLÁN J, WILLIAMS Q. A high pressure infrared spectroscopic study of PbCO3-cerussite: constraints on the structure of the post-aragonite phase [J]. Physics and Chemistry of Minerals, 2005, 32(5/6): 412–417. doi: 10.1007/s00269-005-0010-9 [9] LIN C C, LIU L G. High pressure phase transformations in aragonite-type carbonates [J]. Physics and Chemistry of Minerals, 1997, 24(2): 149–157. doi: 10.1007/s002690050028 [10] MINCH R, DUBROVINSKY L, KURNOSOV A, et al. Raman spectroscopic study of PbCO3 at high pressures and tempera-tures [J]. Physics and Chemistry of Minerals, 2010, 37(1): 45–56. doi: 10.1007/s00269-009-0308-0 [11] KAMINSKII A A, BOHATÝ L, RHEE H, et al. Cerussite, PbCO3: a new stimulated Raman scattering (SRS)-active crystal with high-order Stokes and anti-Stokes lasing: on the 50th anniversary of the discovery of stimulated Raman scattering [J]. Laser & Photonics Reviews, 2013, 7(3): 425–431. doi: 10.1002/lpor.201200123 [12] ZHANG Y F, LIU J, QIN Z X, et al. A high-pressure study of PbCO3 by XRD and Raman spectroscopy [J]. Chinese Physics C, 2013, 37(3): 038001. doi: 10.1088/1674-1137/37/3/038001 [13] MAO H K, BELL P M. Crystal-field effects in spinel: oxidation states of iron and chromium [J]. Geochimica et Cosmochimica Acta, 1975, 39(6/7): 865–866. doi: 10.1016/0016-7037(75)90032-0 [14] 徐济安. 金刚石砧高压实验中压强传递介质对实验的影响—镁铝榴石状态方程的实验测定 [J]. 高压物理学报, 1987, 1(2): 97–101. doi: 10.11858/gywlxb.1987.02.001XU J A. The effect of pressure transmitting medium on the high pressure experiments in diamond anvil cell (DAC): experimental measurement of the equation of state (EOS) of pyrope [J]. Chinese Journal of High Pressure Physics, 1987, 1(2): 97–101. doi: 10.11858/gywlxb.1987.02.001 [15] 张书霞. 高温高压合成实验所用传压介质的研究 [D]. 成都: 四川大学, 2006.ZHANG S X. A study on pressure mediums for high pressure and high temperature experiment [D]. Chengdu: Sichuan University, 2006. [16] KIRSCHNER S M, WATSON J K G. Sextic centrifugal distortion of tetrahedral molecules [J]. Journal of Molecular Spectroscopy, 1973, 47(2): 347–350. doi: 10.1016/0022-2852(73)90018-0 [17] YANG J, DENG W, LI Q, et al. Strength enhancement of nanocrystalline tungsten under high pressure [J]. Matter and Radiation at Extremes, 2020, 5(5): 058401. doi: 10.1063/5.0005395 [18] CHEN B. Exploring nanomechanics with high-pressure techniques [J]. Matter and Radiation at Extremes, 2020, 5(6): 068104. doi: 10.1063/5.0032600 [19] LAVINA B, DERA P, DOWNS R T, et al. Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition [J]. Geophysical Research Letters, 2009, 36(23): L23306. doi: 10.1029/2009GL039652 [20] LIANG W, YIN Y, LI Z M, et al. Single crystal growth, crystalline structure investigation and high-pressure behavior of impurity-free siderite (FeCO3) [J]. Physics and Chemistry of Minerals, 2018, 45(9): 831–842. doi: 10.1007/s00269-018-0965-y [21] 穆巴拉克 • 木里提江, 艾尼瓦尔 • 吾术尔, 王静, 等. 碳酸钡在高温及高压下的相变行为 [J]. 材料导报, 2019, 33(12): 4062–4065.MOLUTJAN M, HUSHUR A, WANG J, et al. Phase transition of BaCO3 under high temperature and high pressure [J]. Materials Reports, 2019, 33(12): 4062–4065. [22] ONO S, KIKEGAWA T, OHISHI Y, et al. Post-aragonite phase transformation in CaCO3 at 40 GPa [J]. American Mineralogist, 2005, 90(4): 667–671. doi: 10.2138/am.2005.1610 -