超高速碎片云撞击下薄板变形与撕裂建模研究

刘泽荣 龙仁荣 张庆明 陈利

刘泽荣, 龙仁荣, 张庆明, 陈利. 超高速碎片云撞击下薄板变形与撕裂建模研究[J]. 高压物理学报, 2022, 36(2): 024202. doi: 10.11858/gywlxb.20210811
引用本文: 刘泽荣, 龙仁荣, 张庆明, 陈利. 超高速碎片云撞击下薄板变形与撕裂建模研究[J]. 高压物理学报, 2022, 36(2): 024202. doi: 10.11858/gywlxb.20210811
LIU Zerong, LONG Renrong, ZHANG Qingming, CHEN Li. Theoretical Study of Deflecting and Petalling of Thin Plate under Debris Cloud Loading Induced by Hypervelocity Impact[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024202. doi: 10.11858/gywlxb.20210811
Citation: LIU Zerong, LONG Renrong, ZHANG Qingming, CHEN Li. Theoretical Study of Deflecting and Petalling of Thin Plate under Debris Cloud Loading Induced by Hypervelocity Impact[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024202. doi: 10.11858/gywlxb.20210811

超高速碎片云撞击下薄板变形与撕裂建模研究

doi: 10.11858/gywlxb.20210811
基金项目: 国防科工局“十三五”碎片专项(KJSP2016030301);国防科工局民用航天技术预研项目(D020304)
详细信息
    作者简介:

    刘泽荣(1995-),男,硕士研究生,主要从事冲击动力学研究. E-mail:rongzixu@126.com

    通讯作者:

    龙仁荣(1982-),男,博士,副教授,主要从事冲击动力学研究. E-mail:longrenrong@bit.edu.cn

  • 中图分类号: O347; V423.42

Theoretical Study of Deflecting and Petalling of Thin Plate under Debris Cloud Loading Induced by Hypervelocity Impact

  • 摘要: 为研究多层板结构中薄板在碎片云作用下的变形与破坏问题,开展了超高速撞击多层板实验。实验结果表明,薄板在高速碎片云冲击下的典型破坏特征为中央穿孔及环孔凹陷变形与花瓣型撕裂。在此基础上,考虑弯矩和膜力作用,建立了描述薄板在轴对称分布强冲击载荷作用下大变形的理想刚塑性环板模型,据此可以计算环板变形过程的横向与径向速度场,结合Grady破碎理论,可以计算花瓣型撕裂的花瓣数,理论计算值与实验比较吻合。研究结果可以为多层板结构在超高速弹丸撞击下的毁伤评估提供理论基础。

     

  • 图  弹丸超高速碰撞多层板结构

    Figure  1.  Multi-shock shield structure subjected to hypervelocity impact

    图  高速冲击后各层板的破坏照片

    Figure  2.  Damage results of each layer after hypervelocity impact

    图  环板变形侧视图

    Figure  3.  Lateral schematic of annular plate deformation

    图  Tresca屈服条件与正交法则

    Figure  4.  Tresca condition and flow rule

    图  环板变形俯视图

    Figure  5.  Top schematic of annular plate deformation

    图  挠度与径向关系示意图

    Figure  6.  Schematic of relationship between deflection and radial displacement

    图  冲量载荷下环板变形示意图

    Figure  7.  Deflection of annular plate subjected to impulse loading

    图  冲量面密度载荷分布曲线

    Figure  8.  Distribution of the impulse per area

    图  环板内环边径向速度与挠度的关系

    Figure  9.  Relationship between inner edge radial velocity and deflection

  • [1] BALOS S, HOWARD D, BREZULIANU A, et al. Perforated plate for ballistic protection: a review [J]. Metals, 2021, 11(4): 526. doi: 10.3390/met11040526
    [2] LU Y Y, ZHANG Q M, XUE Y J, et al. High-velocity impact performance of aluminum and B4C/UHMW-PE composite plate for multi-wall shielding [J]. Applied Sciences, 2020, 10(2): 721. doi: 10.3390/app10020721
    [3] JONES N. Structural impact [M]. 2nd ed. Cambridge: Cambridge University Press, 2011: 1−10.
    [4] CRAGGS J W. The normal penetration of a thin elastic-plastic plate by a right circular cone [J]. Proceedings of the Royal Society of Edinburgh, 1952, 63(4): 359–370.
    [5] 钱伟长. 穿甲力学[M]. 北京: 国防工业出版社, 1984: 177−215.

    QIAN W C. Perforation mechanics [M]. Beijing: National Defense Industry Press, 1984: 177−215.
    [6] REISSNER E. On finite deflections of circular plates [C]//REISSNER E, PRAGER W, STOKER J J.Proceedings of a symposia in applied mathematics (Volume Ⅰ): nonlinear problems in mechanics of continua. New York: American Mathematical Society, 1949: 213−219.
    [7] JONES N. Impulsive loading of a simply supported circular rigid plastic plate [J]. Journal of Applied Mechanics, 1968, 35(1): 59–65. doi: 10.1115/1.3601174
    [8] JONES N. A theoretical study of the dynamic plastic behavior of beams and plates with finite-deflections [J]. International Journal of Solids and Structures, 1971, 7(8): 1007–1029. doi: 10.1016/0020-7683(71)90078-3
    [9] YU T X, CHEN F L. Analysis of the large deflection dynamic plastic response of simply-supported circular plates by the “membrane factor method” [J]. Acta Mechanica Sinica, 1990, 6(4): 333–342. doi: 10.1007/BF02486892
    [10] 龙仁荣. 超高速碰撞多层板结构的碎片云运动破坏模型 [D]. 北京: 北京理工大学, 2008.

    LONG R R. Description and damage effects of debris cloud formed by impact of hypervelocity projectile on multi-plate structure [D]. Beijing: Beijing Institute of Technology, 2008.
    [11] 陈至达. 板、壳有限变形分析 [J]. 力学进展, 1983, 13(2): 1–2.

    CHEN Z D. Nonlinear analysis of large deformation of plates and shells [J]. Advances Mechanics, 1983, 13(2): 1–2.
    [12] TIMOSHENKO S, WOINOWSKY-KRIEGER S. Theory of plates and shells [M]. New York: McGraw-Hill, 1959: 100−112.
    [13] HODGE P G JR. Yield conditions for rotationally symmetric shells under axisymmetric loading [J]. Journal of Applied Mechanics, 1960, 27(2): 323–331. doi: 10.1115/1.3643960
    [14] AGGARWAL H R, ABLOW C M. Plastic bending of an annular plate by uniform impulse [J]. International Journal of Non-Linear Mechanics, 1971, 6(1): 69–80. doi: 10.1016/0020-7462(71)90035-7
    [15] 欧阳成生. 薄膜力作用下钢筋混凝土环板的塑性分析 [J]. 土木工程学报, 1983, 3: 59–70.

    OUYANG C S. A plastic analysis of R. C. ring slabs under membrane action [J]. China Civil Engineering Journal, 1983, 3: 59–70.
    [16] ZUKAS J A. High velocity impact dynamics [M]. New York: Wiley-Interscience, 1990: 65−126.
    [17] GRADY D E. Local inertial effects in dynamic fragmentation [J]. Journal of Applied Physics, 1982, 53(1): 322–325. doi: 10.1063/1.329934
  • 加载中
图(9)
计量
  • 文章访问数:  839
  • HTML全文浏览量:  562
  • PDF下载量:  56
出版历程
  • 收稿日期:  2021-06-11
  • 修回日期:  2021-06-29

目录

    /

    返回文章
    返回