High Velocity Impact Shielding Performance of Basalt Fiber Cloth/Al-Plate Composite Shields
-
摘要: 在弹道段撞击速度范围内,针对玄武岩纤维布/铝板组合防护结构开展了高速撞击实验(实验使用的2017铝球弹丸的直径为3.97 mm,撞击速度为1.49~3.65 km/s),获得了防护结构的弹道极限速度,分析了铝球弹丸高速击穿玄武岩纤维布和铝板后的剩余速度。基于单层铝板发生穿孔失效时的临界撞击动能,研究了玄武岩纤维布/铝板组合防护结构的高速撞击防护性能。结果表明:当弹丸未破碎时,相同直径的铝球弹丸以不同速度击穿相同面密度的玄武岩纤维布后的速度减小量近似为常数;铝球弹丸直径越大,弹丸击穿相同面密度的玄武岩纤维布后的速度减小量越小;在防护结构面密度相同的情况下,铝板前置的玄武岩纤维布/铝板组合防护结构比玄武岩纤维布前置的组合防护结构具有更好的高速撞击防护性能。Abstract: The high-velocity impact tests were carried out on the basalt fiber cloth/Al-plate composite shields, the ballistic limit velocity was obtained in the range of ballistic impact velocity. The diameter of 2017 Al-sphere projectile was 3.97 mm, and the impact velocity of Al-spheres was varied between 1.49 and 3.65 km/s. The residual velocity of Al-sphere projectile penetrating thin Al-plate and basalt fiber cloth bumper was analyzed. Furthermore, the shielding performance of the basalt fiber cloth/Al-plate composite shields was studied based on the critical impact kinetic energy for the failure of the single Al-plate. The results show that the velocity reduction of the constant diameter projectile penetrating the same basalt fiber cloth bumper at different velocities is a constant when the projectile is not broken. The velocity reduction of the projectile decrease with increasing diameter. For the same areal density, the shielding performance of composite shield with aluminum plate as the first wall is better than that of composite shield with basalt fiber cloth as the first wall.
-
Key words:
- basalt fiber cloth /
- composite shield /
- high velocity impact /
- residual velocity /
- shielding performance
-
目前,国内武装贩毒、劫持人质、抢劫银行等严重武装犯罪以及恐怖活动均不断出现。为应对这些危险的武装犯罪事件,需要一些停止作用大、侵彻力低的武器装备,以求能形成较高的制止犯罪能力。而我国目前主要的警用武器装备均存在枪弹的穿透力太大,导致停止作用不足的缺点。国外警方在遇到这种紧急情况时都会使用特制的低侵彻手枪弹头[1]。Kneubuehl等[2]在试验中发现,将美国M193步枪弹的撞击速度提升到750 m/s以上时,弹体在软介质中会破碎,从而达到低侵彻的效果。美国温彻斯特公司生产的“黑爪”弹,其弹体为纯黑色,射入目标后被甲会均匀地向后翻开成6瓣,就像6个带有倒钩的爪子,弹头直径最终可膨胀至口径的两倍左右。近几年国内学者也注意到了低侵彻枪弹的研究意义。李晓杰等[3]对国产5.8 mm口径手枪弹头进行改进,提出了新式的软尖弹和空尖弹,并与标准弹对比,使用ANSYS/LS-DYNA进行弹丸入水的数值仿真,得到3种弹型的速度、位移曲线,以及子弹入水产生的瞬时空腔,结果表明,空尖弹具有良好的低侵彻性能。金永喜等[4]提出了子弹在软目标介质内的翻滚模型,证明弹丸翻滚时产生的离心力能使子弹在撞击目标过程中头部发生破碎,从而使其侵彻深度得到明显的降低,并通过与制式枪弹的实验对比进行了论证。尽管近几年我国开始对低侵彻枪弹进行相关研究,但都仅局限在仿真或者理论的基础上,相关的实验验证少之又少,因此,本工作通过实验与仿真相结合,对低侵彻枪弹做进一步的研究。
根据创伤弹道学[5],子弹在撞击目标介质过程中,弹头的翻转、变形、破碎都能使弹头的能量更快地向介质传递。本工作研究一种空心开花型低侵彻弹。该弹击中目标后弹体头部会向外开裂,利用子弹头部在侵彻过程中产生的大变形,实现子弹的高能量传递性,使开花弹在低速侵彻下初速低、子弹头部变形小、侵彻阻力低,而在高速侵彻下初速高、子弹头部变形大、侵彻阻力高,最终达到开花弹在低速和高速侵彻条件下,侵彻深度始终控制在某一范围之内的目标。因此,该空心开花型低侵彻弹无论近距离还是远距离击中目标,都不会将其射穿,具备良好的低侵彻性能。在应对紧急情况时,只会制止犯罪人员而不会穿透目标误伤群众。
1. 弹丸入水实验
1.1 实验设计
鉴于生物组织的复杂性,采用水介质模拟生物组织。因为大多数生物组织含水80%左右,其密度与水相近,而且水具有均匀、透明、便于直接观察的特点。以5.8 mm口径弹道枪作为发射平台进行弹体侵彻水介质实验,实验现场布置如图 1所示,通过装药量控制弹体着靶速度,用锡箔靶和双通道测试仪测量速度。
实验中空心开花型低侵彻弹的直径为5.8 mm,长径比为5,质量为5.6 g,弹丸头部开有矩形槽,边长为2 mm,凹槽边界上沿轴向设有预开槽,如图 2所示。
1.2 实验结果及分析
通过改变子弹的装药量,得到开花弹在撞击速度为408、501、610、702、814 m/s下弹丸头部的变形情况,实验结果如表 1所示。从表 1中可以看出,开花弹入射水箱后,弹体头部发生不同程度的变形。这是由于开花弹在侵彻靶体过程中会受到较大的侵彻阻力,产生沿弹体轴向的剪切力,弹丸头部发生变形,由于弹头开有矩形凹槽,在矩形槽的轴向边界处会产生相应的拉应力,拉应力使凹槽不断向外膨胀,达到弹体材料的抗拉强度后,弹头沿矩形槽边界断裂,开裂成4瓣,断裂的部分在水的阻力作用下向后翻转,最后呈“花瓣状”。
表 1 实验结果和仿真结果对比Table 1. Comparison of experiment and simulation resultsExperiment Simulation Velocity/(m·s-1) Results Velocity/(m·s-1) Results 408 400 501 500 610 600 702 700 814 800 对比表 1可知,弹丸头部的变形程度与子弹撞击速度有关。在408 m/s较低速度下入水时,弹丸头部部分开裂,矩形槽沿径向略微膨胀。子弹以501~610 m/s速度入水时,弹丸头部开裂成4瓣并伴有外翻现象,但头部凹槽未开裂完全,仍有清晰的孔洞,此时弹丸头部最大横截面处直径为弹体直径的2倍。子弹以702~814 m/s速度入水时,弹头沿矩形槽轴向边界完全开裂成“花瓣状”,且凹槽完全消失,此时弹丸头部最大横截面处直径达到弹体直径的2.4倍。因此,开花弹在低速入射时,初速低,侵彻阻力较小,弹头变形小;在高速入射时,初速高,侵彻阻力大,弹头变形大。
2. 数值模拟的有限元建模及算法
弹头入水的模型如图 3所示。弹头在空气中,空气和水的边界采用无反射边界,空气和水的接触面采用共节点方式。
弹头由紫铜构成,保证了弹体材料的一致性。在算法的选择上:铜选用Lagrange算法,空气和水选用欧拉算法,弹头和水之间采用耦合算法[6]。在材料模型的选择上:空气和水采用LS-DYNA提供的MAT_NULL流体模型;紫铜选用Johnson-Cook材料模型,这种本构方程考虑了高速下的应变率效应和温度效应,适用于高速下的流固耦合。在状态方程的选择上:紫铜、空气和水都采用Grüneisen状态方程[5-7]。
3. 仿真结果比较
3.1 不同速度入水的头部变形比较
使用LS-DYNA软件可以较理想地模拟开花弹的入水过程,图 4为开花弹撞击水介质时弹头的变形过程。从图 4中可以看出,开花弹撞击水介质后,弹头在侵彻阻力作用下发生变形,并沿着矩形槽发生开裂,最后以花瓣状弹头继续运动。
通过模拟开花弹的入水过程,得到开花弹以不同速度撞击水介质后稳定侵彻阶段的弹体变形图,并与实验结果进行对比,如表 1所示。可以看出,仿真结果与实验中弹体变形情况基本吻合。开花弹在较低速撞击下,弹头轻微变形,矩形槽口向外扩张,但未达到开裂的程度,这是因为此时开花弹受到的侵彻阻力过小,弹头矩形槽轴向边界产生的拉应力未达到弹体材料的抗拉强度,无法使弹头开裂。开花弹以600 m/s速度撞击水靶时,弹头受到的拉应力达到一定强度,使头部沿槽口开裂,但从表 1中可以看出,此时弹丸头部未完全开裂,这是由于子弹的撞击速度仍然不足,达不到子弹需要的侵彻阻力。进一步提高开花弹的侵彻速度,在700 m/s速度撞击下,侵彻阻力较大,弹头完全开裂成4瓣,矩形槽消失。
表 2是开花弹在不同入射速度下弹丸头部最大直径的实验数据和仿真数据的对比,其中:Dmax为弹丸头部最大直径,Dmax是其平均值。可以看出,实验结果和仿真结果基本吻合。开花弹速度低于500 m/s时,弹丸头部变形较小;速度为500 m/s时,弹丸头部最大直径为弹体直径的1.2倍;子弹速度为600 m/s时,弹头变形较大,弹丸头部最大直径为弹体直径的2倍;子弹速度达到700 m/s时,开花弹弹头开裂完全,变形达到极限,弹丸头部最大直径为弹体直径的2.4倍。弹头变形程度与实验结果一致,说明数值仿真可以较理想地模拟开花弹的入水过程。
表 2 不同速度入水的弹丸头部变形比较Table 2. Comparison of deformation of projectiles entering water at different velocitiesExperiment Simulation Velocity/(m·s-1) Dmax/mm Dmax/mm Velocity/(m·s-1) Dmax/mm 408 5.10,5.08 5.090 400 5.18 501 6.71,6.79 6.750 500 6.82 610 11.30,11.23 11.265 600 11.48 702 13.82,13.80 13.810 700 13.83 814 13.81,13.81 13.810 800 13.82 3.2 不同速度入水的速度衰减比较
图 5为开花弹在不同速度下撞击水介质的速度衰减曲线,开花弹从空气中射入水后,速度开始降低。从图 5中可以看出,子弹的入射速度越高,速度衰减越明显。在400和500 m/s速度下,子弹速度衰减得比较缓慢,说明低速条件下开花弹头部未发生开裂,变形较小,子弹受到的侵彻阻力低,1 ms后子弹速度分别为182.13和143.58 m/s;600 m/s速度下,子弹速度衰减的速率有所提高,此时开花弹头部已开裂,但仍未变形完全,1 ms后子弹速度为106.36 m/s;700和800 m/s侵彻速度下,开花弹速度衰减十分明显,说明弹体头部完全开裂成“花瓣状”,与水的接触面增大,侵彻阻力高,1 ms后子弹速度分别降低到87.74和75.78 m/s。可以看出,开花弹的入射速度越高,1 ms后子弹的速度反而越低。这是因为开花弹低速入射时,弹头开裂程度小,侵彻过程中弹体最大横截面积小,与水的接触面小,受到的侵彻阻力低,因此速度衰减得较缓慢;随着入射速度的提高,弹头变形增大,与水的接触面增大,开花弹受到的侵彻阻力较大,导致速度衰减得更快。说明开花弹弹头开裂变形对提高子弹的侵彻阻力、降低子弹的速度起很大作用。
3.3 不同速度入水的位移比较
图 6为开花弹在不同速度下撞击水介质的位移曲线。从图 6中可以看出:开花弹以400 m/s入射时,1 ms内在水中的位移是22.13 cm;以500 m/s入射时位移有所增加,达到23.55 cm。这是因为子弹的初速增大,动能变大,而开花弹以500 m/s速度撞击水介质时弹体头部变形很小,矩形槽口发生略微扩张,达不到增大与水的接触面,进而增大侵彻阻力的目的,所以在水中的侵彻深度有所增加。开花弹以600、700和800 m/s速度撞击水介质时,1 ms内在水中的位移分别为20.36、20.55和19.95 cm,高速撞击下子弹在水中的位移明显低于低速撞击下的位移,这是因为开花弹在较高速度下撞击水介质时,弹头发生开裂变形,呈花瓣状,弹体的最大横截面积提高1~2倍,增大了子弹撞击过程中与水的接触面积,极大地提高了子弹在水中受到的侵彻阻力,降低子弹的运动速度,使子弹在高速入射条件下的位移比低速入射时更低。不同速度入射下1 ms后子弹的位移都在20~24 cm范围内,由此可以说明开花弹具有良好的低侵彻特性。
4. 结论
对开花型低侵彻弹进行了不同速度侵彻水介质的实验研究,结果表明:开花弹以500 m/s以下低速撞击时,弹丸头部变形较小,弹形保持良好,稳定侵彻阶段弹头最大直径为弹体直径的1.0~1.2倍;以501~610 m/s中速撞击时,弹头发生开裂,但未变形完全,弹头最大直径达到弹体直径的2倍,受到的侵彻阻力较大;以702~814 m/s高速撞击时,弹头完全开裂,呈花瓣状,弹头最大直径达到弹体直径的2.4倍,受到的侵彻阻力最大。利用LS-DYNA软件模拟开花弹在不同速度下的入水过程,仿真结果与实验结果基本一致,说明数值仿真可以较理想地模拟开花弹的入水过程;得到了子弹的速度衰减曲线和位移曲线,表明开花弹弹头开裂变形对提高子弹的侵彻阻力、降低子弹速度起很大作用,证明开花弹具有良好的低侵彻特性。
-
表 1 不同撞击速度时防护结构的后板损伤实验结果
Table 1. Experimental results of rear wall damage at different impact velocities
No. vp/(km·s−1) Rear wall damage ABA-1 1.49 No perforation, bulge ABA-2 1.68 No perforation, crack ABA-3 1.70 Material spalling, perforation ABA-4 1.74 Material spalling, perforation ABA-5 1.98 Central perforation ABA-6 2.72 Central perforation ABA-7 2.98 Central perforation ABA-8 3.65 No perforation, central cluster of craters BAA-1 1.51 No perforation, bulge BAA-2 1.71 Central perforation BAA-3 1.96 Central perforation BAA-4 2.18 Central perforation BAA-5 2.76 Central perforation BAA-6 3.30 Central perforation BAA-7 3.53 Central perforation AAA-1 1.52 No perforation, bulge AAA-2 1.79 Central perforation AAA-3 2.32 Central perforation WAA-1 1.53 No perforation, bulge WAA-2 1.66 Central perforation WAA-3 2.08 Central perforation 表 2 弹道极限速度的计算值和实验结果
Table 2. Calculated and experimental results of ballistic limit velocity
Type of shield vcc/
(km·s−1)vce/
(km·s−1)δc /
%ABA 1.62 1.68 −3.57 BAA 1.59 1.61 −1.24 AAA 1.65 1.66 −0.60 WAA 1.61 1.59 1.26 -
[1] HEW Y M, CLOSE S. Hypervelocity impact flash expansion geometry under various spacecraft surface electrical conditions [J]. International Journal of Impact Engineering, 2021, 150: 103792. [2] PARK S H, LABOULAIS J N, LEYLAND P, et al. Re-entry survival analysis and ground risk assessment of space debris considering by-products generation [J]. Acta Astronautica, 2021, 179: 604–618. [3] 陈莹, 陈小伟. 改进的Whipple防护结构与相关数值模拟方法研究进展 [J]. 爆炸与冲击, 2021, 41(2): 021403.CHEN Y, CHEN X W. A review on the improved Whipple shield and related numerical simulations [J]. Explosion and Shock Waves, 2021, 41(2): 021403. [4] 张品亮, 宋光明, 龚自正, 等. Al/Mg波阻抗梯度材料加强型Whipple结构超高速撞击特性研究 [J]. 爆炸与冲击, 2021, 39(12): 125101.ZHANG P L, SONG G M, GONG Z Z, et al. Shielding performances of a Whipple shield enhanced by Al/Mg impedance-graded materials [J]. Explosion and Shock Waves, 2021, 39(12): 125101. [5] DESTEFANIS R, SCHAFER F, LAMBERT M, et al. Selecting enhanced space debris shields for manned spacecraft [J]. International Journal of Impact Engineering, 2006, 33: 219–230. [6] CHRISTIANSEN E L, NAGY K, LEAR D M, et al. Space station MMOD shielding [J]. Acta Astronautica, 2009, 65: 921–929. [7] 柳森, 李毅, 黄洁, 等. 弹丸超高速撞击单层和多层板结构的碎片特征研究 [J]. 宇航学报, 2010, 31(6): 1672–1677. doi: 10.3873/j.issn.1000-1328.2010.06.027LIU S, LI Y, HUANG J, et al. Debris cloud characteristics of mono- and multi-plates under hypervelocity impact [J]. Journal of Astronautics, 2010, 31(6): 1672–1677. doi: 10.3873/j.issn.1000-1328.2010.06.027 [8] 宋光明, 李明, 武强, 等. 超高速撞击下波阻抗梯度防护结构碎片云特性研究 [J]. 爆炸与冲击, 2021, 41(2): 021405.SONG G M, LI M, WU Q, et al. Debris cloud characteristics of graded-impedance shields under hypervelocity impact [J]. Explosion and Shock Waves, 2021, 41(2): 021405. [9] CHHABILDAS L C, REINHART W D, THORNHILL T F, et al. Debris generation and propagation phenomenology from hypervelocity impacts on aluminum from 6 to 11 km/s [J]. International Journal of Impact Engineering, 2003, 29: 185–202. [10] LI D S, YANG Y, WANG Z, et al. Experimental investigation on mechanical response and failure analysis of 3D multi-axial warp knitted hybrid composites [J]. Composites Structures, 2020, 246: 112340. [11] FRANCESCONI A, GIACOMUZZO C, GRANDE A M, et al. Comparison of self-healing ionomer to aluminum-alloy bumpers for protecting spacecraft equipment from space debris impacts [J]. Advances in Space Research, 2013, 51: 930–940. [12] CHRISTIANSEN E L, KERR J H. Ballistic limit equations for spacecraft shielding [J]. International Journal of Impact Engineering, 2001, 26: 93–104. [13] 管公顺, 陈礼文, 王少恒, 等. 不锈钢网/铝板多冲击防护屏高速撞击防护性能实验研究 [J]. 高压物理学报, 2012, 26(2): 127–134. doi: 10.11858/gywlxb.2012.02.002GUAN G S, CHEN L W, WANG S H, et al. Experimental investigation on resist capability of stainless steel mesh/Al multi-shock shield by high-velocity impact [J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 127–134. doi: 10.11858/gywlxb.2012.02.002 [14] FAHRENTHOLD E P, PARK Y K. Simulation of hypervelocity impact on aluminum-nextel-kevlar orbital debris shields [J]. International Journal of Impact Engineering, 2003, 29: 227–235. [15] 苗常青, 徐铧东, 靳广焓, 等. 纤维编织材料超高速撞击特性实验研究 [J]. 高压物理学报, 2019, 33(2): 024203. doi: 10.11858/gywlxb.20180654MIAO C Q, XU H D, JIN G H, et al. Experimental study of hypervelocity impact characteristics for fiber fabric materials [J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024203. doi: 10.11858/gywlxb.20180654 [16] LI D S, YANG Y, JIANG L. Experimental study on the fabrication, high-temperature properties and failure analysis of 3D seven-directional braided composites under compression [J]. Composites Structures, 2021, 268: 113934. [17] WEN H M. Predicting the penetration and perforation of FRP laminates struck normally by projectiles with different nose shapes [J]. Composite Structures, 2000, 49(3): 321–329. [18] 哈跃. 玄武岩纤维材料及其填充防护结构超高速撞击特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2010.HA Y. Research on hypervelocity impact properties of woven of basalt fibric and its stuffed shielding structure [D]. Harbin: Harbin Institute of Technology, 2010. [19] 丁莉. 空间碎片双层板防护结构撞击极限研究 [D]. 哈尔滨: 哈尔滨工业大学, 2008.DING L. Study of ballistic limit of dual-wall shielding structures against space debris [D]. Harbin: Harbin Institute of Technology, 2008. [20] COUR-PALAIS B G. Hypervelocity impact in metals, glass and composites [J]. International Journal of Impact Engineering, 1987, 5(1): 221–237. -