High Velocity Impact Shielding Performance of Basalt Fiber Cloth/Al-Plate Composite Shields
-
摘要: 在弹道段撞击速度范围内,针对玄武岩纤维布/铝板组合防护结构开展了高速撞击实验(实验使用的2017铝球弹丸的直径为3.97 mm,撞击速度为1.49~3.65 km/s),获得了防护结构的弹道极限速度,分析了铝球弹丸高速击穿玄武岩纤维布和铝板后的剩余速度。基于单层铝板发生穿孔失效时的临界撞击动能,研究了玄武岩纤维布/铝板组合防护结构的高速撞击防护性能。结果表明:当弹丸未破碎时,相同直径的铝球弹丸以不同速度击穿相同面密度的玄武岩纤维布后的速度减小量近似为常数;铝球弹丸直径越大,弹丸击穿相同面密度的玄武岩纤维布后的速度减小量越小;在防护结构面密度相同的情况下,铝板前置的玄武岩纤维布/铝板组合防护结构比玄武岩纤维布前置的组合防护结构具有更好的高速撞击防护性能。Abstract: The high-velocity impact tests were carried out on the basalt fiber cloth/Al-plate composite shields, the ballistic limit velocity was obtained in the range of ballistic impact velocity. The diameter of 2017 Al-sphere projectile was 3.97 mm, and the impact velocity of Al-spheres was varied between 1.49 and 3.65 km/s. The residual velocity of Al-sphere projectile penetrating thin Al-plate and basalt fiber cloth bumper was analyzed. Furthermore, the shielding performance of the basalt fiber cloth/Al-plate composite shields was studied based on the critical impact kinetic energy for the failure of the single Al-plate. The results show that the velocity reduction of the constant diameter projectile penetrating the same basalt fiber cloth bumper at different velocities is a constant when the projectile is not broken. The velocity reduction of the projectile decrease with increasing diameter. For the same areal density, the shielding performance of composite shield with aluminum plate as the first wall is better than that of composite shield with basalt fiber cloth as the first wall.
-
Key words:
- basalt fiber cloth /
- composite shield /
- high velocity impact /
- residual velocity /
- shielding performance
-
表 1 不同撞击速度时防护结构的后板损伤实验结果
Table 1. Experimental results of rear wall damage at different impact velocities
No. vp/(km·s−1) Rear wall damage ABA-1 1.49 No perforation, bulge ABA-2 1.68 No perforation, crack ABA-3 1.70 Material spalling, perforation ABA-4 1.74 Material spalling, perforation ABA-5 1.98 Central perforation ABA-6 2.72 Central perforation ABA-7 2.98 Central perforation ABA-8 3.65 No perforation, central cluster of craters BAA-1 1.51 No perforation, bulge BAA-2 1.71 Central perforation BAA-3 1.96 Central perforation BAA-4 2.18 Central perforation BAA-5 2.76 Central perforation BAA-6 3.30 Central perforation BAA-7 3.53 Central perforation AAA-1 1.52 No perforation, bulge AAA-2 1.79 Central perforation AAA-3 2.32 Central perforation WAA-1 1.53 No perforation, bulge WAA-2 1.66 Central perforation WAA-3 2.08 Central perforation 表 2 弹道极限速度的计算值和实验结果
Table 2. Calculated and experimental results of ballistic limit velocity
Type of shield vcc/
(km·s−1)vce/
(km·s−1)$\delta $c /
%ABA 1.62 1.68 −3.57 BAA 1.59 1.61 −1.24 AAA 1.65 1.66 −0.60 WAA 1.61 1.59 1.26 -
[1] HEW Y M, CLOSE S. Hypervelocity impact flash expansion geometry under various spacecraft surface electrical conditions [J]. International Journal of Impact Engineering, 2021, 150: 103792. [2] PARK S H, LABOULAIS J N, LEYLAND P, et al. Re-entry survival analysis and ground risk assessment of space debris considering by-products generation [J]. Acta Astronautica, 2021, 179: 604–618. [3] 陈莹, 陈小伟. 改进的Whipple防护结构与相关数值模拟方法研究进展 [J]. 爆炸与冲击, 2021, 41(2): 021403.CHEN Y, CHEN X W. A review on the improved Whipple shield and related numerical simulations [J]. Explosion and Shock Waves, 2021, 41(2): 021403. [4] 张品亮, 宋光明, 龚自正, 等. Al/Mg波阻抗梯度材料加强型Whipple结构超高速撞击特性研究 [J]. 爆炸与冲击, 2021, 39(12): 125101.ZHANG P L, SONG G M, GONG Z Z, et al. Shielding performances of a Whipple shield enhanced by Al/Mg impedance-graded materials [J]. Explosion and Shock Waves, 2021, 39(12): 125101. [5] DESTEFANIS R, SCHAFER F, LAMBERT M, et al. Selecting enhanced space debris shields for manned spacecraft [J]. International Journal of Impact Engineering, 2006, 33: 219–230. [6] CHRISTIANSEN E L, NAGY K, LEAR D M, et al. Space station MMOD shielding [J]. Acta Astronautica, 2009, 65: 921–929. [7] 柳森, 李毅, 黄洁, 等. 弹丸超高速撞击单层和多层板结构的碎片特征研究 [J]. 宇航学报, 2010, 31(6): 1672–1677. doi: 10.3873/j.issn.1000-1328.2010.06.027LIU S, LI Y, HUANG J, et al. Debris cloud characteristics of mono- and multi-plates under hypervelocity impact [J]. Journal of Astronautics, 2010, 31(6): 1672–1677. doi: 10.3873/j.issn.1000-1328.2010.06.027 [8] 宋光明, 李明, 武强, 等. 超高速撞击下波阻抗梯度防护结构碎片云特性研究 [J]. 爆炸与冲击, 2021, 41(2): 021405.SONG G M, LI M, WU Q, et al. Debris cloud characteristics of graded-impedance shields under hypervelocity impact [J]. Explosion and Shock Waves, 2021, 41(2): 021405. [9] CHHABILDAS L C, REINHART W D, THORNHILL T F, et al. Debris generation and propagation phenomenology from hypervelocity impacts on aluminum from 6 to 11 km/s [J]. International Journal of Impact Engineering, 2003, 29: 185–202. [10] LI D S, YANG Y, WANG Z, et al. Experimental investigation on mechanical response and failure analysis of 3D multi-axial warp knitted hybrid composites [J]. Composites Structures, 2020, 246: 112340. [11] FRANCESCONI A, GIACOMUZZO C, GRANDE A M, et al. Comparison of self-healing ionomer to aluminum-alloy bumpers for protecting spacecraft equipment from space debris impacts [J]. Advances in Space Research, 2013, 51: 930–940. [12] CHRISTIANSEN E L, KERR J H. Ballistic limit equations for spacecraft shielding [J]. International Journal of Impact Engineering, 2001, 26: 93–104. [13] 管公顺, 陈礼文, 王少恒, 等. 不锈钢网/铝板多冲击防护屏高速撞击防护性能实验研究 [J]. 高压物理学报, 2012, 26(2): 127–134. doi: 10.11858/gywlxb.2012.02.002GUAN G S, CHEN L W, WANG S H, et al. Experimental investigation on resist capability of stainless steel mesh/Al multi-shock shield by high-velocity impact [J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 127–134. doi: 10.11858/gywlxb.2012.02.002 [14] FAHRENTHOLD E P, PARK Y K. Simulation of hypervelocity impact on aluminum-nextel-kevlar orbital debris shields [J]. International Journal of Impact Engineering, 2003, 29: 227–235. [15] 苗常青, 徐铧东, 靳广焓, 等. 纤维编织材料超高速撞击特性实验研究 [J]. 高压物理学报, 2019, 33(2): 024203. doi: 10.11858/gywlxb.20180654MIAO C Q, XU H D, JIN G H, et al. Experimental study of hypervelocity impact characteristics for fiber fabric materials [J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024203. doi: 10.11858/gywlxb.20180654 [16] LI D S, YANG Y, JIANG L. Experimental study on the fabrication, high-temperature properties and failure analysis of 3D seven-directional braided composites under compression [J]. Composites Structures, 2021, 268: 113934. [17] WEN H M. Predicting the penetration and perforation of FRP laminates struck normally by projectiles with different nose shapes [J]. Composite Structures, 2000, 49(3): 321–329. [18] 哈跃. 玄武岩纤维材料及其填充防护结构超高速撞击特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2010.HA Y. Research on hypervelocity impact properties of woven of basalt fibric and its stuffed shielding structure [D]. Harbin: Harbin Institute of Technology, 2010. [19] 丁莉. 空间碎片双层板防护结构撞击极限研究 [D]. 哈尔滨: 哈尔滨工业大学, 2008.DING L. Study of ballistic limit of dual-wall shielding structures against space debris [D]. Harbin: Harbin Institute of Technology, 2008. [20] COUR-PALAIS B G. Hypervelocity impact in metals, glass and composites [J]. International Journal of Impact Engineering, 1987, 5(1): 221–237.