[1] |
SNYDER G J, TOBERER E S. Complex thermoelectric materials [J]. Nature Materials, 2008, 7(2): 105–114. doi: 10.1038/nmat2090
|
[2] |
HAN C, LI Z, LU G Q, et al. Robust scalable synthesis of surfactant-free thermoelectric metal chalcogenide nanostructures [J]. Nano Energy, 2015, 15: 193–204. doi: 10.1016/j.nanoen.2015.04.024
|
[3] |
ZHAO L D, ZHANG X, WU H J, et al. Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe [J]. Journal of the American Chemical Society, 2016, 138(7): 2366–2373. doi: 10.1021/jacs.5b13276
|
[4] |
MASEK J, NUZHNYJ D N. Changes of electronic structure of SnTe due to high concentration of Sn vacancies [J]. Acta Physica Polonica, 1997, 92(5): 915–918. doi: 10.12693/APhysPolA.92.915
|
[5] |
ZHOU M, GIBBS Z M, WANG H, et al. Optimization of thermoelectric efficiency in SnTe: the case for the light band [J]. Physical Chemistry Chemical Physics, 2014, 16(38): 20741–20748. doi: 10.1039/C4CP02091J
|
[6] |
TAN G J, ZEIER W G, SHI F Y, et al. High thermoelectric performance SnTe-In2Te3 solid solutions enabled by resonant levels and strong vacancy phonon scattering [J]. Chemistry of Materials, 2015, 27(22): 7801–7811. doi: 10.1021/acs.chemmater.5b03708
|
[7] |
LI W, WU Y, LIN S, et al. Advances in environment-friendly SnTe thermoelectrics [J]. ACS Energy Letters, 2017, 2(10): 2349–2355. doi: 10.1021/acsenergylett.7b00658
|
[8] |
PEI Y L, LIU Y. Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS [J]. Journal of Alloys & Compounds, 2012, 514: 40–44.
|
[9] |
BANIK A, BISWAS K. AgI alloying in SnTe boosts the thermoelectric performance via simultaneous valence band convergence and carrier concentration optimization [J]. Journal of Solid State Chemistry, 2016, 242: 43–49. doi: 10.1016/j.jssc.2016.02.012
|
[10] |
TAN G J, ZHAO L D, SHI F Y, et al. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. [J]. Journal of the American Chemical Society, 2014, 136(19): 7006–7017. doi: 10.1021/ja500860m
|
[11] |
TAN X J, SHAO H Z, HE J, et al. Band engineering and improved thermoelectric performance in M-doped SnTe (M = Mg, Mn, Cd, and Hg) [J]. Physical Chemistry Chemical Physics, 2016, 18(10): 7141–7147. doi: 10.1039/C5CP07620J
|
[12] |
ORABI R A R A, HWANG J, LIN C C, et al. Ultralow lattice thermal conductivity and enhanced thermoelectric performance in SnTe: Ga materials [J]. Chemistry of Materials, 2017, 29(2): 612–620.
|
[13] |
BANIK A, SHENOY U S, ANAND S, et al. Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties [J]. Chemistry of Materials, 2015, 27(2): 581–587. doi: 10.1021/cm504112m
|
[14] |
ZHAO L D, WU H J, HAO S Q, et al. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance [J]. Energy and Environmental Science, 2013, 6(11): 3346–3355. doi: 10.1039/c3ee42187b
|
[15] |
KORRINGA J, GERRITSEN A N. The cooperative electron phenomenon in dilute alloys [J]. Physica, 1953, 19(1): 457–507. doi: 10.1016/S0031-8914(53)80053-4
|
[16] |
KULBACHINSKII V, BRANDT N, CHEREMNYKH P, et al. Magnetoresistance and hall effect in Bi2Te3(Sn) in ultrahigh magnetic fields and under pressure [J]. Physica Status Solidi (B), 2010, 150(1): 237–243.
|
[17] |
ZHANG Q, CAO F, LIU W S, et al. Heavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-type PbTe, PbSe, and PbTe1- ySey [J]. Journal of the American Chemical Society, 2012, 134(24): 10031–10038. doi: 10.1021/ja301245b
|
[18] |
ZHANG Q, LIAO B L, LAN Y C, et al. High thermoelectric performance by resonant dopant indium in nanostructured SnTe [J]. Proceedings of the National Academy of Sciences, 2013, 110(33): 13261–13266. doi: 10.1073/pnas.1305735110
|
[19] |
WU H J, CHANG C, FENG D, et al. Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe [J]. Energy & Environmental Science, 2015, 8(11): 3298–3312.
|
[20] |
PEI Y Z, ZHENG L L, LI W, et al. Interstitial point defect scattering contributing to high thermoelectric performance in SnTe [J]. Advanced Electronic Materials, 2016, 2(6): 1600019. doi: 10.1002/aelm.201600019
|
[21] |
VINEIS C J, SHAKOURI A, MAJUMDAR A, et al. Nanostructured thermoelectrics: big efficiency gains from small features [J]. Advanced Materials, 2010, 22(36): 3970–3980. doi: 10.1002/adma.201000839
|
[22] |
TAN G J, SHI F Y, HAO S Q, et al. Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence [J]. Journal of the American Chemical Society, 2015, 137(15): 5100–5112. doi: 10.1021/jacs.5b00837
|
[23] |
KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
|
[24] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1998, 77(18): 3865–3868.
|
[25] |
PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients [J]. Reviews of Modern Physics, 1992, 64(4): 1045–1097. doi: 10.1103/RevModPhys.64.1045
|
[26] |
TAN G J, SHI F Y, HAO S Q, et al. Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe [J]. Journal of the American Chemical Society, 2015, 137(15): 11507–11516.
|
[27] |
HE J, TAN X J, XU J T, et al. Valence band engineering and thermoelectric performance optimization in SnTe by Mn-alloying via a zone-melting method [J]. Journal of Materials Chemistry A, 2015, 3(39): 19974–19979. doi: 10.1039/C5TA05535K
|
[28] |
FU T Z, XIN J Z, ZHU T J, et al. Approaching the minimum lattice thermal conductivity of p-type SnTe thermoelectric materials by Sb and Mg alloying [J]. Science Bulletin, 2019, 64(14): 1024–1030.
|
[29] |
NSHIMYIMANA E, SU X L, XIE H Y, et al. Realization of non-equilibrium process for high thermoelectric performance Sb-doped GeTe [J]. Science Bulletin, 2018, 63(11): 717–725. doi: 10.1016/j.scib.2018.04.012
|