不同不耦合系数下花岗岩爆破损伤特性的离散元模拟

袁增森 徐振洋 潘博 李广尚

袁增森, 徐振洋, 潘博, 李广尚. 不同不耦合系数下花岗岩爆破损伤特性的离散元模拟[J]. 高压物理学报, 2022, 36(1): 015301. doi: 10.11858/gywlxb.20210804
引用本文: 袁增森, 徐振洋, 潘博, 李广尚. 不同不耦合系数下花岗岩爆破损伤特性的离散元模拟[J]. 高压物理学报, 2022, 36(1): 015301. doi: 10.11858/gywlxb.20210804
YUAN Zengsen, XU Zhenyang, PAN Bo, LI Guangshang. Discrete Element Simulation of Blasting Damage Characteristics of Granite under Different Decoupling Coefficients[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 015301. doi: 10.11858/gywlxb.20210804
Citation: YUAN Zengsen, XU Zhenyang, PAN Bo, LI Guangshang. Discrete Element Simulation of Blasting Damage Characteristics of Granite under Different Decoupling Coefficients[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 015301. doi: 10.11858/gywlxb.20210804

不同不耦合系数下花岗岩爆破损伤特性的离散元模拟

doi: 10.11858/gywlxb.20210804
基金项目: “十三五”国家重点研发计划(2016YFC0801603);辽宁科技大学青年骨干人才项目(601011507-25)
详细信息
    作者简介:

    袁增森(1994-),男,硕士研究生,主要从事岩石破碎和工程爆破研究.E-mail:1243215702@qq.com

    通讯作者:

    徐振洋(1982-),男,博士,副教授,主要从事岩石破碎和工程爆破研究. E-mail:xuzhenyang10@foxmail.com

  • 中图分类号: O383; TU45

Discrete Element Simulation of Blasting Damage Characteristics of Granite under Different Decoupling Coefficients

  • 摘要: 为研究径向装药不耦合系数对花岗岩爆破损伤程度的影响,在考虑爆炸冲击波和爆生气体共同作用的基础上,提出了一种“动”、“静”荷载混合施加的PFC爆破模拟方法,采用该方法分别进行了6种不耦合系数下花岗岩爆破过程的数值模拟。模拟结果显示,随着装药不耦合系数的增大,花岗岩爆破损伤程度先增强后减弱。耦合装药下,爆生裂纹数量为9367;不耦合系数为1.2时,裂纹数量增加至最多,为24975;不耦合系数为2.0时,裂纹数量减少为292。对比耦合装药和不耦合系数为1.4时的花岗岩损伤模式发现,爆生气体的准静态压力对爆生裂纹的扩展具有重要作用。根据不同不耦合系数下的爆生裂纹数量,建立了不耦合系数大于或等于1.2时的岩石爆破损伤程度预测模型,拟合度达0.9808。该预测模型对爆破施工设计等工作具有一定的参考意义。

     

  • 图  PFC中动静荷载共同施加原理

    Figure  1.  Sketch of dynamic and quasi-static loads application in PFC

    图  炮孔压力时程曲线

    Figure  2.  Curve of borehole pressure-time history

    图  PFC岩体数值模型

    Figure  3.  Numerical model of rock mass in PFC

    图  平行黏结模型的基本结构

    Figure  4.  Structure of parallel bond model

    图  数值模拟结果与室内实验[20]结果对比

    Figure  5.  Comparison between numerical and experimental results[20]

    图  爆炸冲击应力对孔壁的压力随不耦合系数的变化

    Figure  6.  Curve of the pressure on blasthole wall under explosion stress with different decoupling coefficients

    图  爆生气体对孔壁的压力随不耦合系数的变化

    Figure  7.  Curve of the pressure on blasthole wall under detonation gas stress with different decoupling coefficients

    图  炮孔压力时程曲线

    Figure  8.  Curves of blasthole pressure-time history

    图  $\zeta $=1.4时炮孔压力曲线

    Figure  9.  Curve of blasthole pressure ($\zeta $=1.4)

    图  10  $\zeta $=1.4时爆生裂纹的扩展过程

    Figure  10.  Propagation of blasting induced cracks ($\zeta $=1.4)

    图  11  不同不耦合系数下花岗岩的爆破损伤情况

    Figure  11.  Blasting induced damage of rock mass under different decoupling coefficients

    图  12  爆生裂纹数随不耦合系数的变化曲线

    Figure  12.  Number of blasting induced crack vs. decoupling coefficient

    图  13  指数拟合结果

    Figure  13.  Exponential fitting result

    表  1  主要细观参数

    Table  1.   Main microscopic parameters

    Linear contact parameters
    Rmin/mRmax/Rmin${\bar E{_{\rm l}} }$/GPa${\bar k{_{\text{n} }} }$/${\bar k{_{\text{s}} } }$${\mu {_{\text{c} }} }$
    0.0281.66452.51.0
    Parallel bond parameters
    ${\bar \sigma {_{\text{n} }} }$/MPa${\bar \sigma {_{\text{s} } }}$/MPa${\bar E{_{\rm p}} }$/GPa${\bar K{_{\text{n} } } }$/${\bar K{_{\text{s} } } }$${\varphi {_{\text{c} } } }$/(°)
    72150452.530
    下载: 导出CSV

    表  2  试样的主要力学参数

    Table  2.   Main mechanical parameters of the sample

    Method${E{_{\text{t} } } }$/GPa${\sigma {_{\text{t} } } }$/MPa${v{_{\text{t} } } }$$\,\rho $/(kg·m−3)
    Experiment21.4 – 63.7137.7 – 163.80.23 – 0.262650 – 2740
    Numerical simulation27.2150.930.242700
    下载: 导出CSV

    表  3  不同不耦合系数对应的炮孔半径

    Table  3.   Blasthole radius vs. decoupling coefficient

    $\zeta $rp $\zeta $rp
    1.00.060 1.60.096
    1.20.0721.80.108
    1.40.0842.00.120
    下载: 导出CSV
  • [1] 宗琦, 孟德君. 炮孔不同装药结构对爆破能量影响的理论探讨 [J]. 岩石力学与工程学报, 2003, 22(4): 641–645. doi: 10.3321/j.issn:1000-6915.2003.04.027

    ZONG Q, MENG D J. Influence of different kinds of hole charging structue on explosion energy transmission [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(4): 641–645. doi: 10.3321/j.issn:1000-6915.2003.04.027
    [2] 岳中文, 胡晓冰, 陈志远, 等. 不耦合装药对炸药能量利用率影响的实验研究 [J]. 爆破, 2020, 37(3): 34–39. doi: 10.3963/j.issn.1001-487X.2020.03.006

    YUE Z W, HU X B, CHEN Z Y, et al. Experimental study of effect of uncoupled charge on energy utilization efficiency of explosives [J]. Blasting, 2020, 37(3): 34–39. doi: 10.3963/j.issn.1001-487X.2020.03.006
    [3] WANG Y B. Study of the dynamic fracture effect using slotted cartridge decoupling charge blasting [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 96: 34–46. doi: 10.1016/j.ijrmms.2017.04.015
    [4] 汪旭光. 爆破设计与施工 [M]. 北京: 冶金工业出版社, 2011.

    WANG X G. Blasting design and construction [M]. Beijing: Metallurgical Industry Press, 2011.
    [5] 叶志伟, 陈明, 李桐, 等. 小不耦合系数装药爆破孔壁压力峰值计算方法 [J]. 爆炸与冲击, 2021, 41(6): 064901. doi: 10.11883/bzcyj-2020-0185

    YE Z W, CHEN M, LI T, et al. A calculation method of the peak pressure on borehole wall for low decoupling coefficient charge blasting [J]. Explosion and Shock Waves, 2021, 41(6): 064901. doi: 10.11883/bzcyj-2020-0185
    [6] 徐颖, 孟益平, 程玉生. 装药不耦合系数对爆破裂纹控制的试验研究 [J]. 岩石力学与工程学报, 2002, 21(12): 1843–1847. doi: 10.3321/j.issn:1000-6915.2002.12.020

    XU Y, MENG Y P, CHENG Y S. Study on control of blast crack by decoupling charge index [J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(12): 1843–1847. doi: 10.3321/j.issn:1000-6915.2002.12.020
    [7] 费鸿禄, 李守巨, 何庆志. 光面爆破装药不偶合系数的计算 [J]. 爆炸与冲击, 1992, 12(3): 270–274.

    FEI H L, LI S J, HE Q Z. Determintion of decouple coefficient and analysis of decouple action in the smooth blasting [J]. Explosion and Shock Waves, 1992, 12(3): 270–274.
    [8] 杨仁树, 肖成龙, 李永亮, 等. 不耦合偏心装药结构爆破损伤破坏的分形研究 [J]. 振动与冲击, 2020, 39(12): 129–134. doi: 10.13465/j.cnki.jvs.2020.12.017

    YANG R S, XIAO C L, LI Y L, et al. A fractal study on blasting damage of an eccentric decouple charge structure [J]. Journal of Vibration and Shock, 2020, 39(12): 129–134. doi: 10.13465/j.cnki.jvs.2020.12.017
    [9] YUAN W, WANG W, SU X B, et al. Numerical study of the impact mechanism of decoupling charge on blasting-enhanced permeability in low-permeability sandstones [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 106: 300–310. doi: 10.1016/j.ijrmms.2018.04.029
    [10] 杜俊林, 罗强, 宗琦. 空气不耦合装药爆破孔壁冲击压力分析 [J]. 西安科技大学学报, 2005, 25(3): 306–310. doi: 10.3969/j.issn.1672-9315.2005.03.009

    DU J L, LUO Q, ZONG Q. Analysis on preliminary shock pressure on borehole of air-de-coupling charging [J]. Journal of Xi’an University of Science and Technology, 2005, 25(3): 306–310. doi: 10.3969/j.issn.1672-9315.2005.03.009
    [11] PARK D, JEON B, JEON S. A numerical study on the screening of blast-induced waves for reducing ground vibration [J]. Rock Mechanics and Rock Engineering, 2009, 42(3): 449–473. doi: 10.1007/s00603-008-0016-y
    [12] 吴再海, 安龙, 齐兆军, 等. 基于LS-DYNA与PFC联合的岩体爆破数值模拟方法分析 [J]. 采矿与安全工程学报, 2021, 38(3): 609–614. doi: 10.13545/j.cnki.jmse.2020.0133

    WU Z H, AN L, QI Z J, et al. The numerical simulation method of rock mass blasting based on PFC combined with LS-DYNA [J]. Journal of Mining & Safety Engineering, 2021, 38(3): 609–614. doi: 10.13545/j.cnki.jmse.2020.0133
    [13] 许彪. 基于PFC的岩石控制爆破技术研究 [D]. 淮南: 安徽理工大学, 2018.

    XU B. Research on controlled blasting technology of rock based on PFC [D]. Huainan: Anhui University of Science and Technology, 2018.
    [14] ZHAO J J, ZHANG Y, RANJITH P G. Numerical modelling of blast-induced fractures in coal masses under high in-situ stresses [J]. Engineering Fracture Mechanics, 2019, 225: 106749. doi: 10.1016/j.engfracmech.2019.106749
    [15] 孙宁新, 雷明锋, 张运良, 等. 软弱夹层对爆炸应力波传播过程的影响研究 [J]. 振动与冲击, 2020, 39(16): 112–119, 147. doi: 10.13465/j.cnki.jvs.2020.16.016

    SUN N X, LEI M F, ZHANG Y L, et al. A study on the influence of weak interlayer on the propagation process of explosion stress wave [J]. Journal of Vibration and Shock, 2020, 39(16): 112–119, 147. doi: 10.13465/j.cnki.jvs.2020.16.016
    [16] 张玉磊, 苏健军, 李芝绒, 等. TNT内爆炸准静态压力特性 [J]. 爆炸与冲击, 2018, 38(6): 1429–1434. doi: 10.11883/bzycj-2017-0170

    ZHANG Y L, SU J J, LI Z R, et al. Quasi-static pressure characteristic of TNT’s internal explosion [J]. Explosion and Shock Waves, 2018, 38(6): 1429–1434. doi: 10.11883/bzycj-2017-0170
    [17] 石崇, 张强, 王盛年. 颗粒流(PFC5.0)数值模拟技术及应用 [J]. 岩土力学, 2018, 39(Suppl 2): 36.

    SHI C, ZHANG Q, WANG S N. Numerical simulation technology and application with particle flow code (PFC 5.0) [J]. Rock and Soil Mechanics, 2018, 39(Suppl 2): 36.
    [18] POTYONDY D O. Simulating stress corrosion with a bonded-particle model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5): 677–691. doi: 10.1016/j.ijrmms.2006.10.002
    [19] 张学朋, 王刚, 蒋宇静, 等. 基于颗粒离散元模型的花岗岩压缩试验模拟研究 [J]. 岩土力学, 2014, 35(Suppl 1): 99–105.

    ZHANG X P, WANG G, JIANG Y J, et al. Simulation research on granite compression test based on particle discrete element model [J]. Rock and Soil Mechanics, 2014, 35(Suppl 1): 99–105.
    [20] QIU J D, LI D Y, LI X B, et al. Numerical investigation on the stress evolution and failure behavior for deep roadway under blasting disturbance [J]. Soil Dynamics and Earthquake Engineering, 2020, 137: 106278. doi: 10.1016/j.soildyn.2020.106278
    [21] 孙闯, 敖云鹤, 张家鸣, 等. 花岗岩细观破裂特征及宏观尺度效应的颗粒流研究 [J]. 岩土工程学报, 2020, 42(9): 1687–1695. doi: 10.11779/CJGE202009013

    SUN C, AO Y H, ZHANG J M, et al. Particle flow of meso-fracture characteristics and macro-scale effect of granites [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1687–1695. doi: 10.11779/CJGE202009013
    [22] 李夕兵. 岩石动力学基础与应用 [M]. 北京: 科学出版社, 2014: 258–287.

    LI X B. Rock dynamics fundamentals and applications [M]. Beijing: Science Press, 2014: 258–287.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  959
  • HTML全文浏览量:  423
  • PDF下载量:  52
出版历程
  • 收稿日期:  2021-05-28
  • 修回日期:  2021-06-23

目录

    /

    返回文章
    返回