Dynamic Behaviors of RDX Single Crystal under Ramp Wave Compression up to 35 GPa
-
摘要: 利用磁驱动斜波加载10 MA装置和激光干涉测速技术,开展了35 GPa压力下(100)晶向RDX单晶炸药的斜波压缩实验,获得了RDX单晶/LiF单晶窗口界面速度数据。实验结果显示,速度波剖面表现为明显的三波结构,由低到高依次对应弹性波、塑性波和相变波,α-γ相变的起始压力为3.1 GPa。结合修正的多相状态方程和非平衡相变动力学模型,对RDX单晶炸药的斜波压缩过程开展一维流体动力学数值模拟,模拟结果与实验结果基本一致。Abstract: A ramp wave compression experiment of (100) RDX single crystal under 35 GPa was carried out with the magnetic driven 10 MA device and laser interferometry, and then the interface velocity data of RDX single crystal/LiF window were obtained. The experimental results show that the velocity wave profile shows a three wave structure, which corresponds to elastic wave, plastic wave and phase transition wave from low to high pressure. The onset pressure of α-γ phase transition is 3.1 GPa. One dimensional hydro-dynamic simulation of ramp wave compression process of RDX single crystal was also carried out by combining the modified Hayes multi-phase equation of state and non-equilibrium phase transformation dynamic model. The calculated and experimental data are basically consistent.
-
Key words:
- RDX single crystal /
- ramp wave loading /
- elastic-plastic transition /
- phase transition
-
表 1 实验条件
Table 1. Experimental condition
Component Material Thickness/mm Component Material Thickness/mm Plate Ⅰ Al 0.535 Plate Ⅲ Al 0.542 Sample Ⅰ RDX (100) 0.560 Sample Ⅲ RDX (100) 0.740 Window Ⅰ LiF 8.000 Window Ⅲ LiF 8.000 Plate Ⅱ Al 0.533 Plate Ⅳ Al 0.585 Sample Ⅱ RDX (100) 0.660 Window Ⅳ LiF 8.000 Window Ⅱ LiF 8.000 Note: The diameter of the four windows is 12.2 mm. 表 2 数值模型参数
Table 2. Parameters for numerical simulation
Material τ/ns n Yield strength/GPa Phase Kξ0/GPa $K{_\xi} '$ RDX (100) 30 1.3 0.59 $\alpha $ 13.01 7.20 $\,\beta $ 10.56 6.03 -
[1] 李明, 陈天娜, 庞海燕, 等. RDX晶体的破碎与细观断裂行为 [J]. 含能材料, 2013, 21(2): 200–204. doi: 10.3969/j.issn.1006-9941.2013.02.008LI M, CHEN T N, PANG H Y, et al. Ruptures and mesoscale fracture behaviors of RDX crystals [J]. Chinese Journal of Energetic Materials, 2013, 21(2): 200–204. doi: 10.3969/j.issn.1006-9941.2013.02.008 [2] 王国栋, 刘玉存. 神经网络在炸药晶体密度预测中的应用 [J]. 火炸药学报, 2007, 30(1): 57–59. doi: 10.3969/j.issn.1007-7812.2007.01.016WANG G D, LIU Y C. Application of artificial neural network in predicting the density of explosives [J]. Chinese Journal of Explosives & Propellants, 2007, 30(1): 57–59. doi: 10.3969/j.issn.1007-7812.2007.01.016 [3] 花成, 傅华, 田勇, 等. 冲击波作用下HMX晶体的细观响应 [J]. 火炸药学报, 2010, 33(3): 5–8. doi: 10.3969/j.issn.1007-7812.2010.03.002HUA C, FU H, TIAN Y, et al. Meso-scale response of HMX crystal under the shock wave effect [J]. Chinese Journal of Explosives & Propellants, 2010, 33(3): 5–8. doi: 10.3969/j.issn.1007-7812.2010.03.002 [4] HALL C A, ASAY J R, KNUDSON M D, et al. Experimental configuration for isentropic compression of solids using pulsed magnetic loading [J]. Review of Scientific Instruments, 2001, 72(9): 3587–3595. doi: 10.1063/1.1394178 [5] HARE D E, FORBES J W, REISMAN D B, et al. Isentropic compression loading of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX) and the pressure-induced phase transition at 27 GPa [J]. Applied Physics Letters, 2004, 85(6): 949–951. doi: 10.1063/1.1771464 [6] HARE D E, REISMAN D B, GARCIA F, et al. The isentrope of unreacted LX-04 to 170 kbar [J]. AIP Conference Proceedings, 2004, 706(1): 145–148. doi: 10.1063/1.1780204 [7] HARE D E, REISMAN D B, DICK J J, et al. Isentropic compression loading of HMX and the pressure-induced phase transition at 27 GPa: UCRL-JRNL-202601 [R]. Livermore: Lawrence Livermore National Laboratory, 2004. [8] BAER M R, ROOT S, DATTELBAUM D, et al. Shockless compression studies of HMX-based explosives [J]. AIP Conference Proceedings, 2009, 1195(1): 699–702. doi: 10.1063/1.3295235 [9] BAER M R, HALL C A, GUSTAVSEN R L, et al. Isentropic loading experiments of a plastic bonded explosive and constituents [J]. Journal of Applied Physics, 2007, 101(3): 034906. doi: 10.1063/1.2399881 [10] INFANTE-CASTILLO R, PACHECO-LONDO L C, HERNÁNDEZ-RIVERA S P, et al. Monitoring the α→β solid-solid phase transition of RDX with Raman spectroscopy: a theoretical and experimental study [J]. Journal of Molecular Structure, 2010, 970(1): 51–58. doi: 10.1016/j.molstruc.2010.02.021 [11] GOTO N, FUJIHISA H, YAMAWAKI H, et al. Crystal structure of the high-pressure phase of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (γ-RDX) [J]. The Journal of Physical Chemistry B, 2006, 110(47): 23655–23659. doi: 10.1021/jp0635359 [12] PATTERSON J E, DREGER Z A, GUPTA Y M. Shock wave-induced phase transition in RDX single crystals [J]. The Journal of Physical Chemistry B, 2007, 111(37): 10897–10904. doi: 10.1021/jp079502q [13] CAWKWELL M J, RAMOS K J, HOOKS D E, et al. Homogeneous dislocation nucleation in cyclotrimethylene trinitramine under shock loading [J]. Journal of Applied Physics, 2010, 107(6): 063512. doi: 10.1063/1.3305630 [14] RAMOS K J, HOOKS D E, SEWELL T D, et al. Anomalous hardening under shock compression in (021)-oriented cyclotrimethylene trinitramine single crystals [J]. Journal of Applied Physics, 2010, 108(6): 066105. doi: 10.1063/1.3485807 [15] CAWKWELL M J, SEWELL T D, ZHENG L Q, et al. Shock-induced shear bands in an energetic molecular crystal: application of shock-front absorbing boundary conditions to molecular dynamics simulations [J]. Physical Review B, 2008, 78(1): 014107. doi: 10.1103/PhysRevB.78.014107 [16] HOOKS D E, RAMOS K J, MARTINEZ A R. Elastic-plastic shock wave profiles in oriented single crystals of cyclotri-methylene trinitramine (RDX) at 2.25 GPa [J]. Journal of Applied Physics, 2006, 100(2): 024908. doi: 10.1063/1.2214639 [17] 种涛, 蔡进涛, 赵剑衡, 等. 斜波压缩下RDX单晶弹塑性及相变过程的数值模拟 [C]//第11届全国爆轰学术会议. 玉溪, 2016.CHONG T, CAI J T, ZHAO J H, et al. Numerical simulation of elastoplasticity and phase transformation of RDX single crystal under ramp wave loading [C]//Proceedings of the 11th National Detonation Conference. Yuxi, 2016. [18] CAI J T, ZHAO F, WANG G J, et al. Experimental research on elastic-plastic transition and α to γ phase transformation of RDX crystal under ramp loading [C]//Proceedings of the 2015 International Autumn seminar on Propellants. Qingdao, 2015. [19] 种涛, 莫建军, 郑贤旭, 等. 斜波压缩下RDX单晶的动力学特性 [J]. 物理学报, 2020, 69(17): 176101. doi: 10.7498/aps.69.20200318CHONG T, MO J J, ZHENG X X, et al. Dynamic behaviors of RDX single crystal under ramp compression [J]. Acta Physica Sinica, 2020, 69(17): 176101. doi: 10.7498/aps.69.20200318 [20] 种涛, 莫建军, 蔡进涛, 等. RDX单晶炸药的冲击-斜波加载实验研究 [J]. 高压物理学报, 2020, 34(5): 051301. doi: 10.11858/gywlxb.20200529CHONG T, MO J J, CAI J T, et al. Experimental study on shock-ramp wave profiles in RDX single crystal explosive [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 051301. doi: 10.11858/gywlxb.20200529 [21] 王贵林. 磁驱动平面加载实验技术及其在高压物态方程研究中的应用 [D]. 合肥: 中国科学技术大学, 2014.WANG G L. Magnetic loading techniques and its applications in high-pressure EOS [D]. Hefei: University of Science and Technology of China, 2014. [22] 种涛. 斜波加载下铋、锡等典型金属材料的相变动力学研究 [D]. 合肥: 中国科学技术大学, 2018.CHONG T. Study on kinetics of phase transition of metals under ramp wave loading [D]. Hefei: University of Science and Technology of China, 2018. [23] CHONG T, TANG Z P, TAN F L, et al. Phase transition and dynamics of iron under ramp wave compression [J]. Acta Mechanica Sinica, 2018, 34(5): 902–909. doi: 10.1007/s10409-018-0774-z [24] OLINGER B, ROOF B, CADY H. The linear and volume compression of β-HMX and RDX [C]//Proceedings of the Symposium (International) on High Dynamic Pressures. Paris: CEA, 1978: 3–8.