双向活塞圆筒装置19 mm外径样品组装的压强和温度标定

程志康 张清 刘勋 吴也 黄海军

程志康, 张清, 刘勋, 吴也, 黄海军. 双向活塞圆筒装置19 mm外径样品组装的压强和温度标定[J]. 高压物理学报, 2022, 36(1): 013301. doi: 10.11858/gywlxb.20210802
引用本文: 程志康, 张清, 刘勋, 吴也, 黄海军. 双向活塞圆筒装置19 mm外径样品组装的压强和温度标定[J]. 高压物理学报, 2022, 36(1): 013301. doi: 10.11858/gywlxb.20210802
CHENG Zhikang, ZHANG Qing, LIU Xun, WU Ye, HUANG Haijun. Pressure and Temperature Calibrations of End-Loaded Piston-Cylinder 19 mm Outer Diameter Sample Assembly[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 013301. doi: 10.11858/gywlxb.20210802
Citation: CHENG Zhikang, ZHANG Qing, LIU Xun, WU Ye, HUANG Haijun. Pressure and Temperature Calibrations of End-Loaded Piston-Cylinder 19 mm Outer Diameter Sample Assembly[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 013301. doi: 10.11858/gywlxb.20210802

双向活塞圆筒装置19 mm外径样品组装的压强和温度标定

doi: 10.11858/gywlxb.20210802
基金项目: 国家自然科学基金(41602036)
详细信息
    作者简介:

    程志康(1998-),硕士研究生,主要从事高温高压凝聚态物理研究. E-mail:zhikangcheng@whut.edu.cn

    通讯作者:

    吴 也(1987-),博士,副教授,主要从事高温高压物理研究. E-mail:yew@whut.edu.cn

  • 中图分类号: O369

Pressure and Temperature Calibrations of End-Loaded Piston-Cylinder 19 mm Outer Diameter Sample Assembly

  • 摘要: 在高温高压实验中,样品所处位置的压强、温度及样品腔温度分布情况对实验结果分析十分重要,因此使用高温高压实验装置前需对所用组装进行压强和温度标定。针对双向活塞圆筒装置19 mm外径样品组装,进行了压强与温度标定。利用氯化钠(NaCl)在高压下的熔化曲线对压强进行标定,当下油缸油压出现大幅度下降时,样品腔内的NaCl发生熔化,将此时热电偶测量的温度与文献报道的NaCl在高压下的熔化曲线进行比较,确定样品腔内的实际压强。压强标定结果显示,实际压强与目标压强满足线性关系。采用双热电偶法对19 mm外径样品组装样品腔的中部和上部进行测温,发现样品腔中心温度高于样品腔上部温度,温度梯度随温度升高而增大,随压强升高而减小。在二次加压升温时,样品腔内的温度梯度高于第一次加压升温实验测量结果。所得压强和温度标定结果对今后使用19 mm外径样品组装开展高温高压实验研究具有参考价值和指导意义。

     

  • 图  19 mm外径样品组装的压强标定(a) 和温度标定(b) 的结构平面图

    Figure  1.  Schematic cross sections of 19 mm outer diameter sample assembly for pressure (a) and temperature (b) calibrations

    图  下油缸油压(pL)与实测温度(T)的关系

    Figure  2.  Relationship between oil pressure of lower cylinder (pL) and measured temperature (T)

    图  氯化钠压强标定实验结果

    Figure  3.  Results of sodium chloride pressurecalibration experiments

    图  实际压强(pR)与目标压强(pN)的关系

    Figure  4.  Relationship between the real pressure (pR) and the nominal pressure (pN)

    图  (a)样品腔上部温度(T1)和样品腔中心温度(T2);(b)样品腔中心与上部的温度差值(ΔT)(首次升压至目标压强的温度标定结果)

    Figure  5.  (a) Temperature above the sample chamber (T1) and temperature in the center of the sample chamber (T2); (b) temperature difference between the center and the upper part of the sample chamber (ΔT) (temperature calibration results of the first stage to the nominal pressure)

    图  样品腔中心与上部的温度差值(ΔT

    Figure  6.  Temperature difference between the center andthe upper part of the sample chamber (ΔT)

    表  1  压强标定实验方案

    Table  1.   Pressure calibration experiment scheme

    No.pN/GPapL/psipU/psiTN/℃t/min
    P11.51 6924 0781 20040
    P21.21 3543 2621 10040
    P30.91 0152 4471 05040
    下载: 导出CSV

    表  2  温度标定实验方案

    Table  2.   Temperature calibration experiment scheme

    pN/GPaTemperature/℃
    First programSecond programThird programFourth programFifth programSixth program
    1.52004006008001 0001 200
    1.22004006008001 0001 200
    0.92004006008001 0001 200
    下载: 导出CSV
  • [1] 夏莹. QUICKpress活塞圆筒装置的压力、温度标定及玄武岩体系中锆石溶解度的初步研究 [D]. 北京: 中国科学院大学, 2013.

    XIA Y. Temperature and pressure calibrations for a QUICKpress piston-cylinder apparatus and preliminary study on zircon saturation in basalt [D]. Beijing: University of Chinese Academy of Sciences, 2013.
    [2] BRADLEY C C. High pressure methods in solid state research [M]. London: Butterworths, 1969.
    [3] MANGHNANI M H, AKIMOTO Y S. High-pressure research: applications in geophysics [M]. New York: Academic Press, 1977: 573–583.
    [4] 谢鸿森. 地球深部物质科学导论 [M]. 北京: 科学出版社, 1997

    XIE H S. Introduction to deep Earth material science [M]. Beijing: Science Press, 1997.
    [5] TINGLE T N, GREEN H W, YOUNG T E, et al. Improvements to griggs-type apparatus for mechanical testing at high pressures and temperatures [J]. Pure and Applied Geophysics, 1993, 141: 523–543. doi: 10.1007/BF00998344
    [6] RYBACKI E, RENNER J, KONRAD K, et al. A servohydraulically-controlled deformation apparatus for rock deformation under conditions of ultra-high pressure metamorphism [J]. Pure and Applied Geophysics, 1998, 152: 579–606. doi: 10.1007/s000240050168
    [7] 韩亮, 周永胜, 何昌荣, 等. 3 GPa熔融盐固体介质高温高压三轴压力容器的围压标定 [J]. 高压物理学报, 2011, 25(3): 213–220. doi: 10.11858/gywlxb.2011.03.004

    HAN L, ZHOU Y S, HE C R, et al. Confined pressure calibration for 3 GPa molten salt medium triaxial pressure vessel under high pressure and temperature [J]. Chinese Journal of High Pressure Physics, 2011, 25(3): 213–220. doi: 10.11858/gywlxb.2011.03.004
    [8] LI Z, LI J. Melting curve of NaCl to 20 GPa from electrical measurements of capacitive current [J]. American Mineralogist, 2015, 100(8/9): 1892–1898. doi: 10.2138/am-2015-5248
    [9] 夏莹, 丁兴, 宋茂双, 等. 活塞圆筒装置压力盘样品组装的温度测定和热结构分析 [J]. 高压物理学报, 2014, 28(3): 262–272. doi: 10.11858/gywlxb.2014.03.002

    XIA Y, DING X, SONG M S, et al. Temperature determination and thermal structure analysis on the pressure assembly of a piston-cylinder apparatus [J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 262–272. doi: 10.11858/gywlxb.2014.03.002
    [10] PICKERING J M, SCHWAB B E, JOHNSTON A D. Off-center hot spots: double thermocouple determination of the thermal gradient in a 1.27 cm (1/2 in.) CaF2 piston-cylinder furnace assembly [J]. American Mineralogist, 1998, 83(3/4): 228–235.
    [11] 韩亮, 周永胜, 何昌荣, 等. 3 GPa熔融盐固体介质高温高压三轴压力容器的温度标定 [J]. 高压物理学报, 2009, 23(6): 407–414. doi: 10.3969/j.issn.1000-5773.2009.06.002

    HAN L, ZHOU Y S, HE C R, et al. Temperature calibration for 3 GPa molten salt medium triaxial pressure vessel [J]. Chinese Journal of High Pressure Physics, 2009, 23(6): 407–414. doi: 10.3969/j.issn.1000-5773.2009.06.002
    [12] WATSON E, WARK D, PRICE J, et al. Mapping the thermal structure of solid-media pressure assemblies [J]. Contributions to Mineralogy and Petrology, 2002, 142(6): 640–652. doi: 10.1007/s00410-001-0327-4
    [13] NICKEL K G, BREY G. Subsolidus orthopyroxene-clinopyroxene systematics in the system CaO-MgO-SiO2 to 60 kb: a re-evaluation of the regular solution model [J]. Contributions to Mineralogy and Petrology, 1984, 87(1): 35–42. doi: 10.1007/BF00371400
    [14] SCHILLING F, WUNDER B. Temperature distribution in piston-cylinder assemblies: numerical simulations and laboratory experiments [J]. European Journal of Mineralogy, 2004, 16(1): 7–14. doi: 10.1127/0935-1221/2004/0016-0007
    [15] KAWASHIMA Y, YAGI T. Temperature distribution in a cylindrical furnace for high-pressure use [J]. Review of Scientific Instruments, 1988, 59(7): 1186–1188. doi: 10.1063/1.1139747
    [16] 丁兴. 俯冲工厂与大陆地壳的形成演化: 来自部分指示性元素活动性及高温高压实验的制约[D]. 广州: 中国科学院, 2009.

    DING X. Subduction factory and formation of the continental crust: constraints from mobilities of indicative elements and high pressure experiment [D]. Guangzhou: Chinese Academy of Science, 2009.
    [17] AKELLA J, VAIDYA S, KENNEDY G C. Melting of sodium chloride at pressures to 65 kbar [J]. Physical Review B, 1969, 2(10): 4306–4306.
    [18] MASOTTA M, FREDA C, PAUL T A, et al. Low pressure experiments in piston cylinder apparatus: calibration of newly designed 25 mm furnace assemblies to P = 150 MPa [J]. Chemical Geology, 2012, 312/313: 74–79. doi: 10.1016/j.chemgeo.2012.04.011
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  951
  • HTML全文浏览量:  614
  • PDF下载量:  64
出版历程
  • 收稿日期:  2021-05-24
  • 修回日期:  2021-06-11

目录

    /

    返回文章
    返回