压力和碳含量调控BCxO化合物物理性质的机理研究

刘超 应盼

刘超, 应盼. 压力和碳含量调控BCxO化合物物理性质的机理研究[J]. 高压物理学报, 2021, 35(6): 061101. doi: 10.11858/gywlxb.20210792
引用本文: 刘超, 应盼. 压力和碳含量调控BCxO化合物物理性质的机理研究[J]. 高压物理学报, 2021, 35(6): 061101. doi: 10.11858/gywlxb.20210792
LIU Chao, YING Pan. Mechanism of Pressure and Carbon Content Regulating Physical Properties of BCxO Compounds[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 061101. doi: 10.11858/gywlxb.20210792
Citation: LIU Chao, YING Pan. Mechanism of Pressure and Carbon Content Regulating Physical Properties of BCxO Compounds[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 061101. doi: 10.11858/gywlxb.20210792

压力和碳含量调控BCxO化合物物理性质的机理研究

doi: 10.11858/gywlxb.20210792
基金项目: 国家自然科学基金(12064013);江西省自然科学基金(20202BAB214010);亚稳材料制备技术与科学国家重点实验室开放课题(201906);赣州市科技创新人才计划(202060);江西理工大学清江青年优秀人才支持计划(JXUSTQJYX2020002)
详细信息
    作者简介:

    刘 超(1989-),男,博士,讲师,主要从事新型轻质高硬化合物的理论设计与热压合成研究.E-mail:liuchao198967@126.com

    通讯作者:

    应 盼(1991-),男,博士,讲师,主要从事新型亚稳材料的结构设计与高压合成研究.E-mail:yingpan@ysu.edu.cn

  • 中图分类号: O481.1; O482.1

Mechanism of Pressure and Carbon Content Regulating Physical Properties of BCxO Compounds

  • 摘要: 结合粒子群优化算法生成的候选结构和第一性原理的稳定性分析,预测出新型B-C-O化合物B4C6O4。B4C6O4具有带隙宽度约2.25 eV的直接带隙半导体属性。研究同属BCxO系列,且结构具有相似性的B4C6O4、B2CO2和B4CO4,发现C含量的降低会导致体系带隙增大,三者的分子式体积随C含量的降低而降低,且100 GPa的高压对三者体积均形成高达20%的压缩。高压导致B2CO2和B4C6O4的带隙持续降低,而B4CO4的带隙先升后降。应力-应变模拟结果表明,3种BCxO(x = 3/2, 1/2, 1/4)化合物均具有较高的极限拉伸应力,同时应力引起的应变会影响3种BCxO化合物的带隙。力学性能研究表明,3种BCxO化合物均具有高弹性模量和高硬度等特点。常压下BCxO的最高声子振动频率均高于30 THz,且由高到低分别为B4CO4、B2CO2、B4C6O4,压力作用使该体系结构的键能持续增强。

     

  • 图  常压下B4C6O4结构(2 × 2 × 2)的超胞模型

    Figure  1.  Structure graphs for B4C6O4 (2 × 2 × 2) supercell at ambient pressure

    图  常压和100 GPa下B4C6O4的声子散射谱和声子态密度

    Figure  2.  Phonon dispersion spectrum and phonon density of states of B4C6O4 at ambient pressure and 100 GPa

    图  B4C6O4在恒温273 K和常压下的分子动力学模拟

    Figure  3.  Molecular dynamics simulation for B4C6O4 at 273 K and ambient pressure

    图  基于HSE06计算得到的常压下B4C6O4的电子能带结构和态密度:(a)原胞,(b)单胞(水平红线、暗青色曲线和金色曲线分别代表费米能级、VBM和CBM)

    Figure  4.  Calculated electronic band structures and density of states of B4C6O4 phases via HSE06 with primitive cell (a) and unit cell (b) at ambient pressure (The horizontal red line, dark cyan curve and gold curve represent the Fermi energy level, VBM and CBM, respectively.)

    图  基于PBE计算常压下BCxO原胞结构的电子能带结构和态密度(水平红线、暗青色曲线和金色曲线分别代表费米能级EF、VBM和CBM)

    Figure  5.  Calculated electronic band structures and density of states of three BCxO phases with primitive cell via PBE at ambient pressure (The horizontal red line, dark cyan curve and gold curve represent the Fermi energy level EF, VBM and CBM, respectively.)

    图  基于PBE泛函和原胞模型计算的BCxO(x = 3/2, 1/2, 1/4)的归一化体积(a)和带隙(b)与压力的关系

    Figure  6.  Relationship of the normalized volume (a) and the calculated electronic band gaps (b) of BCxO (x = 3/2, 1/2, 1/4) with pressure based on PBE funtional and primitive cell

    图  模拟得到的3种BCxO沿特定方向的拉伸应力-应变关系

    Figure  7.  Simulated tensile stress-strain relationship along the specific direction for three BCxO phases

    图  模拟得到的3种BCxO在沿特定方向拉伸过程中的电阻-应变关系

    Figure  8.  Simulated gap-strain relationship along the specific direction for three BCxO phases during the tensile process

    图  3种BCxO(x = 3/2, 1/2, 1/4)的体积模量(a)、剪切模量(b)、硬度(c)与压力的关系

    Figure  9.  Relationship of bulk modulus (a), shear modulus (b), and hardness (c) with pressure for BCxO (x = 3/2, 1/2, 1/4)

    图  10  BCxO(x = 3/2, 1/2, 1/4)的最大声子振动频率(a)和零点振动能(b)与压力的关系

    Figure  10.  Relationship of maximum vibrational frenquency (a), and zero-point vibration energy (b) with pressure for BCxO (x = 3/2, 1/2, 1/4)

    表  1  常压下B4C6O4的原子坐标

    Table  1.   Atomic Wyckoff positions of B4C6O4 at ambient pressure

    AtomWyckoff sitexyz
    B4d0.2990.5000.267
    C12b00.5000.991
    C24c0.2500.2500.491
    O4e00.2790.746
    下载: 导出CSV

    表  2  常压和100 GPa下B4C6O4的弹性常数

    Table  2.   Elastic parameters of B4C6O4 at ambient pressure and 100 GPa  GPa

    PressureC11C12C13C22C23
    Ambient 693.28 15.78 77.13542.70167.35
    1001394.79146.17335.20974.72497.69
    PressureC33C44C55C66
    Ambient 516.07255.45197.31222.21
    1001000.58517.68363.80292.39
    下载: 导出CSV

    表  3  恒温常压条件下B4C6O4在分子动力学过程中的动态结构信息

    Table  3.   Structural information of B4C6O4 during molecular dynamics under constant temperature and ambient pressure

    Time/ps$\,\rho $/(g·cm−3)B―B bond length/ÅAtom distance/Å
    C2―C2O―OB―B
    03.1301.8422.7203.0382.757
    0.63.1751.7762.6773.0132.775
    1.23.1371.8692.6973.0262.722
    1.83.0661.8272.7413.0102.810
    2.43.1231.8462.7113.0632.806
    3.03.1281.8842.7383.0332.798
    下载: 导出CSV
  • [1] XU B, TIAN Y J. Superhard materials: recent research progress and prospects [J]. Science China Materials, 2015, 58(2): 132–142. doi: 10.1007/s40843-015-0026-5
    [2] 刘银娟, 贺端威, 王培, 等. 复合超硬材料的高压合成与研究 [J]. 物理学报, 2017, 66(3): 038103. doi: 10.7498/aps.66.038103

    LIU Y J, HE D W, WANG P, et al. Syntheses and studies of superhard composites under high pressure [J]. Acta Physica Sinica, 2017, 66(3): 038103. doi: 10.7498/aps.66.038103
    [3] KIDALOV S V, SHAKHOV F M, DAVIDENKO V M, et al. Synthesis and properties of superhard crystalline materials in boron-carbon-nitrogen system [J]. Technical Physics Letters, 2011, 37(3): 247–249. doi: 10.1134/S1063785011030266
    [4] SOLOZHENKO V L, KURAKEVYCH O O, ANDRAULT D, et al. Ultimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5 [J]. Physical Review Letters, 2009, 102(1): 015506. doi: 10.1103/PhysRevLett.102.015506
    [5] ZININ P V, MING L C, ISHII H A, et al. Phase transition in BCx system under high-pressure and high-temperature: synthesis of cubic dense BC3 nanostructured phase [J]. Journal of Applied Physics, 2012, 111(11): 114905. doi: 10.1063/1.4723275
    [6] KOBAYASHI M, HIGASHI I, BRODHAG C, et al. Structure of B6O boron-suboxide by Rietveld refinement [J]. Journal of Materials Science, 1993, 28(8): 2129–2134. doi: 10.1007/BF00367573
    [7] ENDO T, SATO T, SHIMADA M. High-pressure synthesis of B2O with diamond-like structure [J]. Journal of Materials Science Letters, 1987, 6(6): 683–685. doi: 10.1007/BF01770925
    [8] ZHAO Y, HE D W, DAEMEN L L, et al. Superhard B-C-N materials synthesized in nanostructured bulks [J]. Journal of Materials Research, 2002, 17(12): 3139–3145. doi: 10.1557/JMR.2002.0454
    [9] SOLOZHENKO V L, ANDRAULT D, FIQUET G, et al. Synthesis of superhard cubic BC2N [J]. Applied Physics Letters, 2001, 78(10): 1385–1387. doi: 10.1063/1.1337623
    [10] KNITTLE E, KANER R B, JEANLOZ R, et al. High-pressure synthesis, characterization, and equation of state of cubic C-BN solid solutions [J]. Physical Review B, 1995, 51(18): 12149–12156. doi: 10.1103/PhysRevB.51.12149
    [11] LIU L Y, HU M, ZHAO Z S, et al. Superhard conductive orthorhombic carbon polymorphs [J]. Carbon, 2020, 158: 546–552. doi: 10.1016/j.carbon.2019.11.024
    [12] 李子鹤, 刘超, 马梦东, 等. 新型超硬C5N晶体结构及性能的第一性原理研究 [J]. 高压物理学报, 2018, 32(1): 010103. doi: 10.11858/gywlxb.20170606

    LI Z H, LIU C, MA M D, et al. Structure and properties of novel superhard C5N: a first-principles study [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010103. doi: 10.11858/gywlxb.20170606
    [13] LUO X G, GUO X J, XU B, et al. Body-centered superhard BC2N phases from first principles [J]. Physical Review B, 2007, 76(9): 094103. doi: 10.1103/PhysRevB.76.094103
    [14] LIU A Y, COHEN M L. Prediction of new low compressibility solids [J]. Science, 1989, 245(4920): 841–842. doi: 10.1126/science.245.4920.841
    [15] GARVIE L A J, HUBERT H, PETUSKEY W T, et al. High-pressure, high-temperature syntheses in the B-C-N-O system [J]. Journal of Solid State Chemistry, 1997, 133(2): 365–371. doi: 10.1006/jssc.1997.7583
    [16] BOLOTINA N B, DYUZHEVA T I, BENDELIANI N A. Atomic structure of boron suboxycarbide B(C,O)0.155 [J]. Crystallography Reports, 2001, 46(5): 734–740. doi: 10.1134/1.1405858
    [17] LI Y W, LI Q, MA Y M. B2CO: a potential superhard material in the B-C-O system [J]. EPL (Europhysics Letters), 2011, 95(6): 66006. doi: 10.1209/0295-5075/95/66006
    [18] ZHANG M G, YAN H Y, ZHENG B B, et al. Influences of carbon concentration on crystal structures and ideal strengths of B2CxO compounds in the B-C-O system [J]. Scientific Reports, 2015, 5: 15481. doi: 10.1038/srep15481
    [19] LIU C, ZHAO Z S, LUO K, et al. Superhard orthorhombic phase of B2CO compound [J]. Diamond and Related Materials, 2017, 73: 87–92. doi: 10.1016/j.diamond.2016.07.010
    [20] QIAO L P, JIN Z, YAN G Y, et al. Density-functional-studying of oP8-, tI16-, and tP4-B2CO physical properties under pressure [J]. Journal of Solid State Chemistry, 2019, 270: 642–650. doi: 10.1016/j.jssc.2018.12.012
    [21] LIU C, CHEN M W, HE J L, et al. Superhard B2CO phases derived from carbon allotropes [J]. RSC Advances, 2017, 7(82): 52192–52199. doi: 10.1039/c7ra09277f
    [22] YAN H Y, ZHANG M G, WEI Q, et al. A new orthorhombic ground-state phase and mechanical strengths of ternary B2CO compound [J]. Chemical Physics Letters, 2018, 701: 86–92. doi: 10.1016/j.cplett.2018.04.041
    [23] CHEN M W, LIU C, LIU M L, et al. Exploring the electronic, mechanical, and anisotropy properties of novel tetragonal B2CO phase [J]. Journal of Materials Research, 2019, 34(21): 3617–3626. doi: 10.1557/jmr.2019.271
    [24] WANG S N, OGANOV A R, QIAN G R, et al. Novel superhard B-C-O phases predicted from first principles [J]. Physical Chemistry Chemical Physics, 2016, 18(3): 1859–1863. doi: 10.1039/c5cp05367f
    [25] NURUZZAMAN M, ALAM M A, SHAH M A H, et al. Investigation of thermodynamic stability, mechanical and electronic properties of superhard tetragonal B4CO4 compound: ab initio calculations [J]. Computational Condensed Matter, 2017, 12: 1–8. doi: 10.1016/j.cocom.2017.05.005
    [26] ZHENG B B, ZHANG M G, WANG C J. Exploring the mechanical anisotropy and ideal strengths of tetragonal B4CO4 [J]. Materials, 2017, 10(2): 128. doi: 10.3390/ma10020128
    [27] QIAO L P, JIN Z. Two B-C-O compounds: structural, mechanical anisotropy and electronic properties under pressure [J]. Materials, 2017, 10(12): 1413. doi: 10.3390/ma10121413
    [28] LIU C, CHEN M W, YANG Y, et al. Theoretical exploring the mechanical and electrical properties of tI12-B6C4O2 [J]. Computational Materials Science, 2018, 150: 259–264. doi: 10.1016/j.commatsci.2018.04.020
    [29] 刘超, 陈明伟, 梁彤祥. B-C-O化合物硬质结构的理论设计与性质研究[M]. 北京: 冶金工业出版社, 2020.
    [30] WANG Y C, LV J, ZHU L, et al. Crystal structure prediction via particle-swarm optimization [J]. Physical Review B, 2010, 82(9): 094116. doi: 10.1103/PhysRevB.82.094116
    [31] WANG Y C, LV J, ZHU L, et al. CALYPSO: a method for crystal structure prediction [J]. Computer Physics Communications, 2012, 183(10): 2063–2070. doi: 10.1016/j.cpc.2012.05.008
    [32] WANG H, WANG Y C, LV J, et al. CALYPSO structure prediction method and its wide application [J]. Computational Materials Science, 2016, 112: 406–415. doi: 10.1016/j.commatsci.2015.09.037
    [33] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP [J]. Zeitschrift für Kristallographie-Crystalline Materials, 2005, 220(5/6): 567–570. doi: 10.1524/zkri.220.5.567.65075
    [34] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [35] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physical Review B, 1990, 41(11): 7892–7895. doi: 10.1103/PhysRevB.41.7892
    [36] PARLINSKI K, LI Z Q, KAWAZOE Y. First-principles determination of the soft mode in cubic ZrO2 [J]. Physical Review Letters, 1997, 78(21): 4063–4066. doi: 10.1103/PhysRevLett.78.4063
    [37] MOUHAT F, COUDERT F X. Necessary and sufficient elastic stability conditions in various crystal systems [J]. Physical Review B, 2014, 90(22): 224104. doi: 10.1103/PhysRevB.90.224104
    [38] BROQVIST P, ALKAUSKAS A, PASQUARELLO A. Defect levels of dangling bonds in silicon and germanium through hybrid functionals [J]. Physical Review B, 2008, 78(7): 075203. doi: 10.1103/PhysRevB.78.075203
    [39] KRUKAU A V, VYDROV O A, IZMAYLOV A F, et al. Influence of the exchange screening parameter on the performance of screened hybrid functionals [J]. Journal of Chemical Physics, 2006, 125(22): 224106. doi: 10.1063/1.2404663
    [40] 刘超. AlX化合物结构与性质的第一性原理研究[M]. 北京: 冶金工业出版社, 2020.
    [41] DIAS R P, SILVERA I F. Observation of the Wigner-Huntington transition to metallic hydrogen [J]. Science, 2017, 355(6326): 715–718. doi: 10.1126/science.aal1579
    [42] MA Y M, EREMETS M, OGANOV A R, et al. Transparent dense sodium [J]. Nature, 2009, 458(7235): 182–185. doi: 10.1038/nature07786
    [43] WU Z J, ZHAO E J, XIANG H P, et al. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles [J]. Physical Review B, 2007, 76(5): 054115. doi: 10.1103/PhysRevB.76.054115
    [44] TIAN Y J, XU B, ZHAO Z S. Microscopic theory of hardness and design of novel superhard crystals [J]. International Journal of Refractory Metals and Hard Materials, 2012, 33: 93–106. doi: 10.1016/j.ijrmhm.2012.02.021
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1250
  • HTML全文浏览量:  724
  • PDF下载量:  39
出版历程
  • 收稿日期:  2021-05-12
  • 修回日期:  2021-05-26

目录

    /

    返回文章
    返回