冲击载荷下仿贝壳砖泥结构的动态响应

刘英志 雷建银 王志华

刘英志, 雷建银, 王志华. 冲击载荷下仿贝壳砖泥结构的动态响应[J]. 高压物理学报, 2022, 36(1): 014202. doi: 10.11858/gywlxb.20210790
引用本文: 刘英志, 雷建银, 王志华. 冲击载荷下仿贝壳砖泥结构的动态响应[J]. 高压物理学报, 2022, 36(1): 014202. doi: 10.11858/gywlxb.20210790
LIU Yingzhi, LEI Jianyin, WANG Zhihua. Dynamic Response of Narce-Like Brick and Mortar Structure under Impact Load[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014202. doi: 10.11858/gywlxb.20210790
Citation: LIU Yingzhi, LEI Jianyin, WANG Zhihua. Dynamic Response of Narce-Like Brick and Mortar Structure under Impact Load[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014202. doi: 10.11858/gywlxb.20210790

冲击载荷下仿贝壳砖泥结构的动态响应

doi: 10.11858/gywlxb.20210790
基金项目: 国家自然科学基金(11902215,11772216)
详细信息
    作者简介:

    刘英志(1996-),男,硕士,主要从事材料冲击动力学行为研究. E-mail:965383086@qq.com

    通讯作者:

    王志华(1977-),男,教授,主要从事材料冲击动力学行为研究. E-mail:wangzh077@163.com

  • 中图分类号: O341

Dynamic Response of Narce-Like Brick and Mortar Structure under Impact Load

  • 摘要: 贝壳作为典型的抗冲击生物材料,具有轻质、高强、高韧等优异性能。通过构建仿贝壳砖泥结构有限元模型,并对其在落锤冲击载荷下的动态响应进行数值模拟,分析了堆叠层数、冲击速度及锤头类型对仿贝壳砖泥结构能量吸收性能的影响。结果表明:5类堆叠层数下的仿贝壳砖泥结构的比吸能呈先增加后减小的变化趋势,并且在所设计的5类堆叠层数结构中,3层仿贝壳砖泥结构具有最大的比吸能,其值较比吸能最小的单层结构提高了10.8%;随着冲击速度的提升,结构载荷峰值及能量吸收均略有增大;相同锤径下,圆柱形锤头较半球形锤头更易穿透模型。

     

  • 图  仿贝壳砖泥结构构建流程:(a) 单层砖、泥单胞模型,(b) 单层单胞装配,(c) 3层及5层单胞模型,(d) 整体模型平面图

    Figure  1.  Flowchart of construction of nacre-like brick and mortar structure: (a) unit model of single layer brick and mortar, (b) assembly of single layer brick and mortar, (c) unit models of three-layer and five-layer, (d) plane of the overall model

    图  准静态拉伸下软硬材料的应力-应变曲线:(a) 硬材料的应力-应变曲线, (b) 软材料的应力-应变曲线

    Figure  2.  Stress-strain curves of stiff and soft phases under quasi-static tensile: (a) stress-strain curves of stiff phase, (b) stress-strain curves of soft phase

    图  试件及落锤试验装置照片:(a) 3层仿贝壳砖泥结构试件正视图及侧视图,(b) 落锤冲击试验装置及原理示意图

    Figure  3.  Figure of specimen and drop hammer test device: (a) the front view and side view of the three-layer nacre-like brick and mortar structure test piece, (b) drop hammer impact test device and its schematic diagram

    图  试验结果与有限元模拟结果的对比:(a) 力-位移曲线,(b) 出口面损伤模式

    Figure  4.  Comparison of test result and finite element simulation results: (a) force-displacement curves, (b) damage pattern diagram of exit surface

    图  3 m/s冲击速度下不同堆叠层数仿贝壳砖泥结构的有限元模拟结果:(a) 力-位移曲线,(b) 速度-位移曲线

    Figure  5.  Finite element simulation results of nacre-like brick-mortar structures with different stacked layersunder the impact velocity of 3 m/s: (a) force-displacement curves, (b) velocity-displacement curves

    图  5类不同堆叠层数结构的能量吸收曲线及比吸能:(a) 能量吸收曲线,(b) 比吸能

    Figure  6.  Energy absorption curves and specific energy absorption graphs of five types of stacked layer structures: (a) energy absorption curves, (b) specific energy absorption chart

    图  5类不同结构最大压缩位移时刻的变形:(a) 单层结构,(b) 双层结构,(c) 3层结构,(d) 4层结构,(e) 5层结构

    Figure  7.  Deformation diagram at the time of maximum compression displacement of five types of structures: (a) single-layer structure, (b) two-layer structure, (c) three-layer structure, (d) four-layer structure, (e) five-layer structure

    图  不同冲击速度下3层仿贝壳砖泥结构的有限元模拟结果:(a) 力-位移曲线,(b) 能量-位移曲线

    Figure  8.  Finite element simulation results of three-layer nacre-like brick and mortar structure under different impact velocities: (a) force-displacement curves, (b) energy absorption-displacement curves

    图  3类半球直径下的有限元模拟结果:(a) 力-位移曲线,(b) 速度-位移曲线

    Figure  9.  Finite element simulation results under three hemispheric diameters: (a) force-displacement curves, (b) velocity-displacement curves

    图  10  不同直径圆柱形锤头冲击下的有限元模拟结果:(a) 力-位移曲线,(b) 速度-位移曲线

    Figure  10.  Finite element simulation results of cylindrical hammer with different diameters under impact: (a) force-displacement curves, (b) velocity-displacement curves

    图  11  不同锤径下两类锤头作用的比吸能对比

    Figure  11.  Comparison of specific energy absorption of two kinds of hammer heads under different hammer diameters

    表  1  砖类硬质材料参数

    Table  1.   Material parameters of brick

    MaterialDensity/(kg·m–3)Young’s modulus/GPaPoisson’s ratioFailure stress/MPa
    VeroWhite Plus1 2001.40.360
    下载: 导出CSV

    表  2  泥类软质材料参数[14]

    Table  2.   Material parameters of mortar[14]

    MaterialDensity/(kg·m–3)Bulk modulus/GPaStatic shear modulus/MPaDynamic shear modulus/MPaFailure strain
    Tango Plus1 200100.83101
    下载: 导出CSV

    表  3  锤头材料参数

    Table  3.   Material parameters of hammer

    MaterialDensity/(kg·m–3)Young’s modulus/GPaPoisson’s ratio
    Stainless steel7 8502000.3
    下载: 导出CSV
  • [1] JIA Z A, YU Y, HOU S Y, et al. Biomimetic architected materials with improved dynamic performance [J]. Journal of the Mechanics and Physics of Solids, 2019, 125: 178–197. doi: 10.1016/j.jmps.2018.12.015
    [2] JIA Z A, YU Y, WANG L F. Learning from nature: use material architecture to break the performance tradeoffs [J]. Materials and Design, 2019, 168: 107650. doi: 10.1016/j.matdes.2019.107650
    [3] JIA Z A, WANG L F. 3D printing of biomimetic composites with improved fracture toughness [J]. Acta Materialia, 2019, 173: 61–73. doi: 10.1016/j.actamat.2019.04.052
    [4] WEGST U G K, BAI H, SAIZ E, et al. Bioinspired structural materials [J]. Nature Materials, 2015, 14(1): 23–36. doi: 10.1038/nmat4089
    [5] STUDART A R. Towards high-performance bioinspired composites [J]. Advanced Materials, 2012, 24(37): 5024–5044. doi: 10.1002/adma.201201471
    [6] 张学骜, 王建方, 吴文健, 等. 贝壳珍珠层生物矿化及其对仿生材料的启示 [J]. 无机材料学报, 2006, 21(2): 257–266. doi: 10.3321/j.issn:1000-324X.2006.02.001

    ZHANG X A, WANG J F, WU W J, et al. Advances in biomineralization of nacreous layer and its inspiration for biomimetic materials [J]. Journal of Inorganic Materials, 2006, 21(2): 257–266. doi: 10.3321/j.issn:1000-324X.2006.02.001
    [7] 孙娜, 吴俊涛, 江雷. 贝壳珍珠层及其仿生材料的研究进展 [J]. 高等学校化学学报, 2011, 32(10): 2231–2239.

    SUN N, WU J T, JIANG L. Research progress of nacre and biomimetic synthesis of nacre-like materials [J]. Chemical Journal of Chinese Universities, 2011, 32(10): 2231–2239.
    [8] 赵赫威, 郭林. 仿贝壳珍珠母层状复合材料的制备及应用 [J]. 科学通报, 2017, 62(6): 576–589. doi: 10.1360/N972016-00754

    ZHAO H W, GUO L. Synthesis and applications of layered structural composites inspired by nacre [J]. Chinese Science Bulletin, 2017, 62(6): 576–589. doi: 10.1360/N972016-00754
    [9] MEYERS M A, CHEN P Y, LIN A Y M, et al. Biological materials: structure and mechanical properties [J]. Progress in Materials Science, 2008, 53(1): 1–206. doi: 10.1016/j.pmatsci.2007.05.002
    [10] 侯东芳, 周根树, 郑茂盛. 贝壳珍珠层断裂过程的原位观察及其增韧机制分析 [J]. 材料科学与工程学报, 2007, 25(3): 388–391. doi: 10.3969/j.issn.1673-2812.2007.03.016

    HOU D F, ZHOU S G, ZHENG M S. In situ SEM observation of crack propagation and analysis of the toughening mechanism in nacre [J]. Journal of Materials Science and Engineering, 2007, 25(3): 388–391. doi: 10.3969/j.issn.1673-2812.2007.03.016
    [11] FENG Q L, CUI F Z, PU G, et al. Crystal orientation, toughening mechanisms and a mimic of nacre [J]. Materials Science and Engineering C, 2000, 11(1): 19–25. doi: 10.1016/S0928-4931(00)00138-7
    [12] 马骁勇, 梁海弋, 王联凤. 三维打印贝壳仿生结构的力学性能 [J]. 科学通报, 2016, 61(7): 728–734. doi: 10.1360/N972015-00263

    MA X Y, LIANG H Y, WANG L F. Multi-materials 3D printing application of shell biomimetic structure [J]. Chinese Science Bulletin, 2016, 61(7): 728–734. doi: 10.1360/N972015-00263
    [13] 侯祥龙, 雷建银, 李世强, 等. 3D打印贝壳仿生复合材料的拉伸力学行为 [J]. 高压物理学报, 2020, 34(1): 014102.

    HOU X L, LEI J Y, LI S Q, et al. Tension mechanical behavior of 3D printed composite materials inspired by nacre [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 014102.
    [14] GU G X, TAKAFFOLI M, BUEHLER M J. Hierarchically enhanced impact resistance of bioinspired composites [J]. Advanced Materials, 2017, 29(28): 1700060. doi: 10.1002/adma.201700060
    [15] WU X D, MENG X S, ZHANG H G. An experimental investigation of the dynamic fracture behavior of 3D printed nacre-like composites [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112: 104068. doi: 10.1016/j.jmbbm.2020.104068
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  1218
  • HTML全文浏览量:  811
  • PDF下载量:  57
出版历程
  • 收稿日期:  2021-05-11
  • 修回日期:  2021-05-21

目录

    /

    返回文章
    返回