增强后效复合药型罩结构的数值模拟

李金霖 蒋建伟 门建兵 王树有 李梅

李金霖, 蒋建伟, 门建兵, 王树有, 李梅. 增强后效复合药型罩结构的数值模拟[J]. 高压物理学报, 2022, 36(1): 015102. doi: 10.11858/gywlxb.20210785
引用本文: 李金霖, 蒋建伟, 门建兵, 王树有, 李梅. 增强后效复合药型罩结构的数值模拟[J]. 高压物理学报, 2022, 36(1): 015102. doi: 10.11858/gywlxb.20210785
LI Jinlin, JIANG Jianwei, MEN Jianbing, WANG Shuyou, LI Mei. Numerical Simulation of the Structure of Composite Liner to Enhance After-Effect[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 015102. doi: 10.11858/gywlxb.20210785
Citation: LI Jinlin, JIANG Jianwei, MEN Jianbing, WANG Shuyou, LI Mei. Numerical Simulation of the Structure of Composite Liner to Enhance After-Effect[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 015102. doi: 10.11858/gywlxb.20210785

增强后效复合药型罩结构的数值模拟

doi: 10.11858/gywlxb.20210785
详细信息
    作者简介:

    李金霖(1996-),女,硕士研究生,主要从事高效毁伤战斗部、爆炸冲击数值模拟研究.E-mail:lijinlin219@163.com

    通讯作者:

    蒋建伟(1962-),男,博士,教授,主要从事高效毁伤战斗部、爆炸冲击数值模拟研究.E-mail:bitjjw@bit.edu.cn

  • 中图分类号: O385; TJ410

Numerical Simulation of the Structure of Composite Liner to Enhance After-Effect

  • 摘要: 针对增强聚能射流的破甲后效问题,设计了等壁平顶锥形铜铝双层复合药型罩装药结构,采用冲击波物理显示欧拉动力学软件SPEED开展复合射流成型及对钢-铝间隔靶侵彻过程的数值模拟,分析内外双层药型罩高度比$\varepsilon $、药型罩锥角$\alpha $等参数对复合射流成型和间隔靶侵彻性能的影响规律。研究结果表明:复合射流的头部速度随$\varepsilon $增大呈先减小后增加的趋势,在ε约为1/2时,可形成具有相近速度的铜铝同轴复合射流微元,利于铝射流微元与目标相互作用实现后效增强毁伤;且当α在50°~60°范围内时,复合射流中段为集中的铝射流微元,更利于侵彻后的爆炸或爆燃反应。对优化参数的复合药型罩结构数值模拟结果与文献公布的实验结果吻合较好。研究结果对增强后效聚能装药设计具有参考价值。

     

  • 图  活性复合药型罩聚能装药示意图

    Figure  1.  Schematic diagram of shaped chargewith active compound liner

    图  活性复合药型罩聚能装药Euler计算模型

    Figure  2.  Euler calculation model for shaped charge of active compound charge

    图  靶板模型示意图

    Figure  3.  Schematic diagram of target plate model

    图  复合射流的头部速度和长度随$\varepsilon $的变化

    Figure  4.  Head velocity and length of the composite jet change with $\varepsilon $

    图  不同$\varepsilon $对应的射流速度变化曲线

    Figure  5.  Curves of jet velocity with different $\varepsilon $

    图  不同$\varepsilon $工况下复合射流侵彻的数值模拟结果(t=120 µs)

    Figure  6.  Numerical calculation results of compound jet penetration with different $\varepsilon $ (t=120 µs)

    图  α不同时复合射流的头部速度和射流长度变化

    Figure  7.  Head velocity and length of the composite jet changed with α

    图  不同α对应的射流速度变化曲线

    Figure  8.  Curves of jet velocity changed with α

    图  120 μs时射流侵彻靶板的数值模拟结果

    Figure  9.  Simulation results of jet penetrating into target plates at 120 μs

    图  10  高速摄影实验结果[5]

    Figure  10.  Experimental results obtained by high-speed photography [5]

    图  11  射流侵彻靶板的数值模拟结果

    Figure  11.  Simulation results of jet penetration into target plate

    图  12  活性复合射流增强后效反应过程

    Figure  12.  After effect reaction process enhanced by the active composite jet

    表  1  材料模型

    Table  1.   Material model

    PartsMaterialEquation of stateStrength model
    ExplosiveJH-2JWL
    Outer linerAlShockJohnson-Cook
    Inner linerOFHCShockJohnson-Cook
    Target 1SteelShockJohnson-Cook
    Target 2AlShockJohnson-Cook
    下载: 导出CSV

    表  2  JH-2炸药JWL状态方程参数[6]

    Table  2.   JWL equation of state parameter of JH-2 explosive[6]

    $\,\rho $0/(g·cm−3)D/(km·s−1)E0/GPapCJ/GPaA/GPaB/GPaR1R2$\omega $
    1.78.4010.03056.46.8014.11.30.36
    下载: 导出CSV

    表  3  罩体及靶板材料参数

    Table  3.   Material parameters of the liner material and target plate

    Material$ \,\rho$/(g·cm−3a/MPab/MPaCNmTm/K
    OFHC8.96 902920.0250.311.091356
    Al2.703241140.0020.421.34 925
    Steel7.837925100.0140.261.031793
    下载: 导出CSV

    表  4  不同工况下复合射流成型过程

    Table  4.   Composite jet forming process with different working conditions

    $\varepsilon $Time of compound jet forming/μs
    0102040
    1/4
    1/3
    1/2
    2/3
    3/4
    下载: 导出CSV

    表  5  不同α工况下典型时刻复合射流成型

    Table  5.   Compound jet forming process with different α

    α/(º)Time of compound jet forming/μs

    20

    40
    50
    55
    60
    65
    下载: 导出CSV
  • [1] 郑宇, 王晓鸣, 李文彬, 等. 双层药型罩射流形成的理论建模与分析 [J]. 火炸药学报, 2008, 31(3): 10–14. doi: 10.3969/j.issn.1007-7812.2008.03.003

    ZHENG Y, WANG X M, LI W B, et al. Theoretical modeling and analysis on jet formation of double-layered conical liner [J]. Chinese Journal of Explosives & Propellants, 2008, 31(3): 10–14. doi: 10.3969/j.issn.1007-7812.2008.03.003
    [2] 刘安帮. 双金属复合药型罩特性分析 [C]//破甲技术文集三. 西安: 五机部科研局, 1982: 158−162.

    LIU A B. Analysis of characteristics of bimetallic compound liner [C]//Proceedings of Anthology of Sunder Armor Technology Three. Xi'an: Scientific Research Bureau of the Fifth Machinery Ministry, 1982: 158−162.
    [3] MASON J S. Experimental testing of bimetallic and reactive shaped charge liners [D]. Illinois: University of Illinois at Urbana-Champaign, 2010.
    [4] LANGAN T, RILEY M A, BUCHTA M W. Reactive shaped charges and thermal spray methods of making same: US7278353 B2 [P]. 2007-10-09.
    [5] LEE S, KIM J, KIM S, et al. Performance comparison of double-layer liner for shaped charge fabricated using kinetic spray [J]. Journal of Thermal Spray Technology, 2019, 28(3): 484–494. doi: 10.1007/s11666-018-0807-y
    [6] 刘润滋. 含能复合药型罩的技术研究 [D]. 太原: 中北大学, 2016.

    LIU R Z. Research on technology of composite liners comprised of reactive material [D]. Taiyuan: North University of China, 2016.
    [7] 许世昌. 双层含能药型罩射流成型机理及侵彻性能研究 [D]. 南京: 南京理工大学, 2015.

    XU S C. Study on jet forming mechanism and penetration performance of double layer energetic liner [D]. Nanjing: Nanjing University of Science and Technology, 2015.
    [8] NUMERRICS G. Speed V2.3 user’s manual [Z]. 2016.
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  1061
  • HTML全文浏览量:  630
  • PDF下载量:  74
出版历程
  • 收稿日期:  2021-04-25
  • 修回日期:  2021-07-14
  • 录用日期:  2022-07-14

目录

    /

    返回文章
    返回