丝瓜络对甲烷/空气预混气体的阻火抑爆性能

贺云龙 张玉铎 袁必和 陈先锋 陈文涛 杨满江 王馨 陈公轻

贺云龙, 张玉铎, 袁必和, 陈先锋, 陈文涛, 杨满江, 王馨, 陈公轻. 丝瓜络对甲烷/空气预混气体的阻火抑爆性能[J]. 高压物理学报, 2021, 35(6): 065202. doi: 10.11858/gywlxb.20210778
引用本文: 贺云龙, 张玉铎, 袁必和, 陈先锋, 陈文涛, 杨满江, 王馨, 陈公轻. 丝瓜络对甲烷/空气预混气体的阻火抑爆性能[J]. 高压物理学报, 2021, 35(6): 065202. doi: 10.11858/gywlxb.20210778
HE Yunlong, ZHANG Yuduo, YUAN Bihe, CHEN Xianfeng, CHEN Wentao, YANG Manjiang, WANG Xin, CHEN Gongqing. Fire and Explosion Suppression Performance of Luffa Sponge in Premixed Methane/Air Gas[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 065202. doi: 10.11858/gywlxb.20210778
Citation: HE Yunlong, ZHANG Yuduo, YUAN Bihe, CHEN Xianfeng, CHEN Wentao, YANG Manjiang, WANG Xin, CHEN Gongqing. Fire and Explosion Suppression Performance of Luffa Sponge in Premixed Methane/Air Gas[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 065202. doi: 10.11858/gywlxb.20210778

丝瓜络对甲烷/空气预混气体的阻火抑爆性能

doi: 10.11858/gywlxb.20210778
基金项目: 国家重点研发计划(2017YFC0804705);国家自然科学基金(51774221);湖北省安全生产专项资金科技项目(KJZX202007004);湖北省重点研发计划(2020BCB077)
详细信息
    作者简介:

    贺云龙(1997-),男,硕士,主要从事防火防爆技术研究. E-mail:303307@whut.edu.cn

    通讯作者:

    袁必和(1988-),男,博士,副教授,主要从事工业爆炸及防火防爆技术研究. E-mail:yuanbh@whut.edu.cn

  • 中图分类号: O389; X932

Fire and Explosion Suppression Performance of Luffa Sponge in Premixed Methane/Air Gas

  • 摘要: 基于多孔材料阻火隔爆机理,采用管道爆炸系统、压力传感器、高速摄影仪等设备,研究了天然硬质丝瓜络在不同填充位置(距点火端1.9、4.4 m)及不同填充长度(5、8和10 cm)条件下,对甲烷体积分数为9.5%的甲烷-空气预混气体爆炸压力与火焰传播的抑制效果。试验结果表明:丝瓜络在不同工况下均对爆炸压力和火焰传播产生抑制作用,同时又具有障碍物加压效果。具体表现为:丝瓜络填充于距点火端1.9 m时,对爆炸压力与火焰传播速率的抑制效果优于其填充于距点火端4.4 m时;当填充位置一定时,材料的填充长度显著影响爆炸压力与火焰传播速率;当材料填充在距起爆点1.9 m时,3种长度的丝瓜络均完全阻断了火焰传播,尤以填充长度为10 cm时的抑爆效果最佳,相比于未填充工况,其最大爆炸压力和最大爆炸压力上升速率分别降低了73.90%和71.72%。

     

  • 图  硬质天然丝瓜络

    Figure  1.  Rigid sponge of natural luffa

    图  试验装置示意图

    Figure  2.  Schematic diagram of test device

    图  填充于位置A时最大爆炸压力随填充长度的变化

    Figure  3.  Variation of maximum explosion pressure at filling position A with filling length

    图  填充于位置A时最大爆炸压力上升速率随填充长度的变化

    Figure  4.  Variation of the maximum explosive pressure rising rate at filling position A with filling length

    图  填充于位置B时最大爆炸压力随填充长度的变化

    Figure  5.  Variation of maximum explosion pressure at filling position B with filling length

    图  填充于位置B时填充管道最大爆炸压力上升速率随填充长度的变化

    Figure  6.  Variation of the maximum explosive pressure rising rate at filling position B with filling length

    图  不同长度丝瓜络作用下的火焰传播图像

    Figure  7.  Flame propagation images with different filling lengths of luffa sponge

    图  不同长度丝瓜络爆炸测试后数码照片

    Figure  8.  Digital photographs of luffa sponge with different lengths after explosion test

    图  填充于位置B时不同填充长度下火焰传播速率随时间的变化

    Figure  9.  Flame propagation rate versus time under different filling lengths at filling position B

  • [1] 陈鹏, 杨永波, 郭实龙, 等. 金属丝网对甲烷/空气预混火焰传播影响的研究 [J]. 中国安全科学学报, 2014, 24(7): 33–36.

    CHEN P, YANG Y B, GUO S L, et al. Study on influence of metal mesh on methane/air premixed mixture flame propagation [J]. China Safety Science Journal, 2014, 24(7): 33–36.
    [2] 程方明, 常助川, 高彤彤, 等. 不同位置多孔障碍物对预混火焰传播的影响 [J]. 中国安全科学学报, 2020, 30(11): 114–120.

    CHENG F M, CHANG Z C, GAO T T, et al. Influence of multi-hole obstacles at different locations on premixed flame’s propagation [J]. China Safety Science Journal, 2020, 30(11): 114–120.
    [3] 崔洋洋, 王志荣, 钱承锦,等. 丝网结构对容器管道开口系统气体爆炸的影响 [J]. 解放军理工大学学报(自然科学版), 2017, 18(1): 87–91.

    CUI Y Y, WANG Z R, QIAN C J, et al. Effect of wire mesh on gas explosion in spherical vessel connected to pipe opening to atmosphere [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2017, 18(1): 87–91.
    [4] JOO H I, DUNCAN K, CICCARELLI G. Flame quenching performance of ceramic foam [J]. Combustion Science and Technology, 2006, 178(10/11): 1755–7769. doi: 10.1080/00102200600788692
    [5] WANG C, HUANG F L, ADDAI E K, et al. Effect of concentration and obstacles on flame velocity and overpressure of methane-air mixture [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 302–310. doi: 10.1016/j.jlp.2016.05.021
    [6] KITAGAWA K, TAKAYAMA K, YASUHARA M. Attenuation of shock waves propagating in polyurethane foams [J]. Shock Waves, 2006, 15(6): 437–445. doi: 10.1007/s00193-006-0042-1
    [7] 邢志祥, 杜贞, 欧红香, 等. 新型多孔非金属材料阻火抑爆性能研究 [J]. 中国安全科学学报, 2015, 25(7): 74–79.

    XING Z X, DU Z, OU H X, et al. Study on fire resistance-explosion proof performance of novel porous non-metallic material [J]. China Safety Science Journal, 2015, 25(7): 74–79.
    [8] 张新, 张鑫, 吴洁, 等. 聚丙烯阻隔抑爆材料的制备与阻燃性能研究 [J]. 安全与环境工程, 2018, 25(6): 132–138.

    ZHANG X, ZHANG X, WU J, et al. Preparation and flame retardant properties of polypropylene explosion-proof materials [J]. Safety and Environmental Engineering, 2018, 25(6): 132–138.
    [9] 余明高, 阳旭峰, 郑凯, 等. 障碍物对甲烷/氢气爆炸特性的影响 [J]. 爆炸与冲击, 2018, 38(1): 19–27.

    YU M G, YANG X F, ZHENG K, et al. Influence of obstacle on flame propagation laws of gas and coal dust explosion [J]. Explosion and Shock Waves, 2018, 38(1): 19–27.
    [10] 王磊, 司荣军, 苗磊, 等. 障碍物压力反射特性对瓦斯爆炸传播影响的数值模拟研究 [J]. 中国安全生产科学技术, 2020, 16(8): 106–112.

    WANG L, SI R J, MIAO L, et al. Numerical simulation research on influence of obstacle pressure reflection characteristics on gas explosion propagation [J]. China Safety Science Journal, 2020, 16(8): 106–112.
    [11] 徐阿猛, 陈学习, 贾进章. 障碍物对瓦斯爆炸冲击波传播的影响研究 [J]. 中国安全科学学报, 2019, 29(9): 96–101.

    XU A M, CHEN X X, JIA J Z. Effects of obstacles on gas explosion shock wave propagation [J]. China Safety Science Journal, 2019, 29(9): 96–101.
    [12] 徐海顺, 高林杰, 苏登. 铝镁合金泡沫抑制甲烷-空气混合物爆炸火焰传播 [J]. 中国安全科学学报, 2019, 29(1): 81–86.

    XU H S, GAO L J, SU D. Suppression of methane-air mixtures explosion flame propagation using aluminum-magnesium alloy-based foam composite [J]. China Safety Science Journal, 2019, 29(1): 81–86.
    [13] 时本军, 穆朝民, 周辉, 等. 空腔体积比对甲烷爆炸冲击波传播机制的影响 [J]. 中国安全科学学报, 2020, 30(3): 87–93.

    SHI B J, MU Z M, ZHOU H, et al. Influence of cavity volume ratio on propagation of methane blast wave [J]. China Safety Science Journal, 2020, 30(3): 87–93.
    [14] NIE B S, HE X Q, HE R M, et al. The roles of foam ceramics in suppression of gas explosion overpressure and quenching of flame propagation [J]. Journal of Hazardous Materials, 2011, 192(2): 741–747. doi: 10.1016/j.jhazmat.2011.05.083
    [15] 喻健良, 闫兴清. 硅酸铝棉对火焰速度和爆炸超压的抑制作用 [J]. 爆炸与冲击, 2013, 33(4): 363–368. doi: 10.3969/j.issn.1001-1455.2013.04.005

    YU J L, YAN X Q. Suppression of flame speed and explosion over pressure by aluminum silicate wool [J]. Explosion and Shock Waves, 2013, 33(4): 363–368. doi: 10.3969/j.issn.1001-1455.2013.04.005
    [16] 宋先钊, 解立峰, 李斌, 等. 甲烷气氛条件下网状铝合金材料阻隔防爆性能研究 [J]. 消防科学与技术, 2018, 37(11): 1494–1497. doi: 10.3969/j.issn.1009-0029.2018.11.013

    SONG X Z, XIE L F, LI B, et al. Study on the barrier explosion-proof performance of mesh aluminum alloy under methane atmosphere [J]. Fire Science and Technology, 2018, 37(11): 1494–1497. doi: 10.3969/j.issn.1009-0029.2018.11.013
    [17] 李祥春, 聂百胜, 杨春丽,等. 封闭空间内瓦斯浓度对瓦斯爆炸反应动力学特性的影响 [J]. 高压物理学报, 2017, 31(2): 135–147.

    LI X C, NIE B S, YANG C L, et al. Effect of gas concentration on kinetic characteristics of gas explosion in confined space [J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 135–147.
  • 加载中
图(9)
计量
  • 文章访问数:  608
  • HTML全文浏览量:  332
  • PDF下载量:  36
出版历程
  • 收稿日期:  2021-04-20
  • 修回日期:  2021-05-17

目录

    /

    返回文章
    返回