Experimental Study and Numerical Simulation of Dynamic Fracture Behavior of Branch Staggered Laminated Biomimetic Composites under Impact Loading
-
摘要: 通过三点弯动态冲击实验和数值模拟方法,研究了分支交错层状仿生复合材料的动态断裂韧性。首先设计并制备了分支交错层状仿贝壳复合材料试样,即将一种脆性刚性材料和一种橡胶类材料分别作为复合材料的硬质层和软胶层;随后采用改进的分离式Hopkinson压杆装置进行了三点弯冲击实验;接着讨论了初始冲击速度、硬质材料长宽比、软质材料层厚度对复合材料试样动态断裂行为的影响;最后采用ABAQUS有限元数值模拟,研究了不同宽度和不同冲击方向对复合材料试样动态断裂韧性和裂纹扩展的影响。结果表明:随着冲击速度和硬质材料长宽比增加、软胶层厚度减小,裂纹越倾向于沿直线扩展,反之,裂纹越倾向于绕过硬质材料沿着软胶层呈折线扩展;试样的峰值动载荷和起裂时间也随之增大。有限元模拟结果表明:随着结构总宽度的增大,试样断裂韧性增加,裂纹倾向于绕过硬质材料沿着软胶层扩展;采用实验设计的冲击方向时,试样的断裂韧性高于其他方向。Abstract: The dynamic fracture toughness of branch staggered laminated biomimetic composites was studied by three-point bending dynamic impact experiments and numerical simulations. Firstly, the branched staggered laminated shell-like composite specimens were designed and prepared. A brittle rigid material and a rubber material were selected as the hard and soft phases of the composite, respectively. Next, the three-point bending impact experiments were carried out by the improved split Hopkinson bar device, then the effects of initial impact velocity, hard material aspect ratio and soft material layer thickness on the dynamic fracture behavior of composite specimens were discussed. Finally, the effects of different widths and impact directions on the dynamic fracture toughness and crack propagation of composite specimens were studied by numerical simulation using finite element software ABAQUS. The experimental results show that with the increase of the impact velocity and the ratio of length to width of hard material, the thickness of the soft rubber layer decreases, the crack tends to propagate along a straight line, and vice versa. With the increase of the impact velocity, the peak dynamic load and initiation time of the specimen also increase. The finite element simulation results show that the fracture toughness of the specimen increases with the increase of the width, and the crack tends to bypass the hard material and propagate along the soft rubber layer; using the impact direction designed by the experiment, the fracture toughness of the sample is higher than that in other directions.
-
表 1 动态实验测试的参数值
Table 1. Parameters of the dynamic experimental tests
A/mm2 E/GPa ${\,\rho }$/(kg·m−3) C0/(m·s−1) C1/(m·s−1) 19.6 200 7800 5603.7 1595.8 -
[1] 邵浩彬, 朱军, 周琦, 等. 三角帆蚌贝壳的微结构及尺寸变化特征 [J]. 复合材料学报, 2019, 36(10): 2398–2406. doi: 10.13801/j.cnki.fhclxb.20190301.001SHAO H B, ZHU J, ZHOU Q, et al. Characteristics of microstructure and size change of the shell of Hyriopsis cumingii [J]. Acta Materiae Compositae Sinica, 2019, 36(10): 2398–2406. doi: 10.13801/j.cnki.fhclxb.20190301.001 [2] 王振兴, 原梅妮, 李立州, 等. 贝壳珍珠母增韧机理研究进展 [J]. 材料导报, 2015, 29(8): 98–102.WANG Z X, YUAN M N, LI L Z, et al. Research progress of toughening mechanisms of nacre shell [J]. Materials Reports, 2015, 29(8): 98–102. [3] SHIN Y A, YIN S, LI X, et al. Nanotwin-governed toughening mechanism in hierarchically structured biological materials [J]. Nature Communications, 2016, 7: 10772. doi: 10.1038/ncomms10772 [4] MEYERS M A, CHEN P Y, LIN A Y M, et al. Biological materials: structure and mechanical properties [J]. Progress in Materials Science, 2008, 53(1): 1–206. doi: 10.1016/j.pmatsci.2007.05.002 [5] 白明敏, 李伟信, 洪毓鸿, 等. 仿贝壳正六边形Al2O3/环氧树脂层状复合材料的制备与表征 [J]. 陶瓷学报, 2019, 40(1): 80–86.BAI M M, LI W X, HONG Y H, et al. Preparation and characterization of shell-like hexagonal Al2O3/epoxy resin laminated composites [J]. Journal of Ceramics, 2019, 40(1): 80–86. [6] 吴和成, 肖毅华. 陶瓷和仿珍珠母陶瓷/聚脲复合结构的冲击损伤对比 [J]. 高压物理学报, 2020, 34(2): 024201. doi: 10.11858/gywlxb.20190808WU H C, XIAO Y H. Comparison of impact damage between ceramic structure and nacre-like ceramic/polyurea composite structure [J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 024201. doi: 10.11858/gywlxb.20190808 [7] 平冠群, 史金飞, 高海涛, 等. 基于AFM的仿生贝壳增材制造模型表达 [J]. 现代制造技术与装备, 2020(9): 14–16.PING G Q, SHI J F, GAO H T, et al. AFM based modeling of bionic shell additive manufacturing [J]. Modern Manufacturing Technology and Equipment, 2020(9): 14–16. [8] 杨森, 靳丽, 董杰, 等. 金属基仿生贝壳材料的制备方法 [J]. 中南大学学报(自然科学版), 2020, 51(11): 3199–3210. doi: 10.11817/j.issn.1672-7207.2020.11.023YANG S, JIN L, DONG J, et al. Methods for preparing metal-based nacre-inspired composites [J]. Journal of Central South University (Science and Technology), 2020, 51(11): 3199–3210. doi: 10.11817/j.issn.1672-7207.2020.11.023 [9] 马骁勇, 梁海弋, 王联凤. 三维打印贝壳仿生结构的力学性能 [J]. 科学通报, 2016, 61(7): 728–734.MA X Y, LIANG H Y, WANG L F. Multi-materials 3D printing application of shell biomimetic structure [J]. Chinese Science Bulletin, 2016, 61(7): 728–734. [10] DIMAS L S, BRATZEL G H, EYLON I, et al. Tough composites inspired by mineralized natural materials: computation, 3D printing, and testing [J]. Advanced Functional Materials, 2013, 23(36): 4629–4638. doi: 10.1002/adfm.201300215 [11] 陈昊宇, 殷莎, 胡建星, 等. 航天器冲击防护用热塑性仿生复合材料的弯曲性能研究 [J]. 航天器环境工程, 2019, 36(2): 151–155. doi: 10.12126/see.2019.02.008CHEN H Y, YIN S, HU J X, et al. Bending properties of thermoplastic bioinspired helicoidal laminated composites used in impact protection of spacecraft [J]. Spacecraft Environment Engineering, 2019, 36(2): 151–155. doi: 10.12126/see.2019.02.008 [12] 黄玉松, 郑威, 辛培训, 等. 贝壳珍珠层结构仿生复合材料研究 [J]. 工程塑料应用, 2008, 36(10): 21–25. doi: 10.3969/j.issn.1001-3539.2008.10.006HUANG Y S, ZHENG W, XIN P X, et al. Study on conch nacre structure bio-inspired composites [J]. Engineering Plastics Application, 2008, 36(10): 21–25. doi: 10.3969/j.issn.1001-3539.2008.10.006 [13] ZHANG P, HEYNE M A, TO A C. Biomimetic staggered composites with highly enhanced energy dissipation: design, modeling, and test [J]. Journal of the Mechanics & Physics of Solids, 2015, 83: 285–300. [14] GU G X, TAKAFFOLI M, BUEHLER M J. Hierarchically enhanced impact resistance of bioinspired composites [J]. Advanced Materials, 2017, 29(28): 1700060. doi: 10.1002/adma.201700060 [15] JIA Z, YANG Y, HOU S Y, et al. Biomimetic architected materials with improved dynamic performance [J]. Journal of the Mechanics and Physics of Solids, 2019, 125: 178–197. doi: 10.1016/j.jmps.2018.12.015 [16] 郭历伦, 钟卫洲, 陈忠富, 等. 冲击载荷下镁铝合金裂纹动态扩展过程的数值模拟 [J]. 爆炸与冲击, 2016, 36(5): 648–654. doi: 10.11883/1001-1455(2016)05-0648-07GUO L L, ZHONG W Z, CHEN Z F, et al. Numerical research on dynamic fracture process of magnalium alloy under impact load [J]. Explosion and Shock Waves, 2016, 36(5): 648–654. doi: 10.11883/1001-1455(2016)05-0648-07 [17] JIANG F C, LIU R T, ZHANG X X, et al. Evaluation of dynamic fracture toughness KId by Hopkinson pressure bar loaded instrumented Charpy impact test [J]. Engineering Fracture Mechanics, 2004, 71(3): 279–287. doi: 10.1016/S0013-7944(03)00139-5 [18] 卢芳云, 陈荣, 林玉亮, 等. 霍普金森杆实验技术 [M]. 北京: 科学出版社, 2013: 227−247.LU F Y, CHEN R, LIN Y L, et al. Hopkinson bar techniques [M]. Beijing: Science Press, 2013: 227−247. [19] WU X D, MENG X S, ZHANG H G. An experimental investigation of the dynamic fracture behavior of 3D printed nacre-like composites [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112: 104068. doi: 10.1016/j.jmbbm.2020.104068 [20] 孟祥生, 武晓东, 张海广. 3D打印浆砌层合结构复合材料层间断裂韧性的数值模拟 [J]. 高压物理学报, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827MENG X S, WU X D, ZHANG H G. Numerical simulation on interlaminar fracture toughness of 3D printed mortar laminated composites [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827 [21] GU G X, TAKAFFOLI M, HSIEH A J, et al. Biomimetic additive manufactured polymer composites for improved impact resistance [J]. Extreme Mechanics Letters, 2016, 9: 317–323. doi: 10.1016/j.eml.2016.09.006