Effect of Dynamic Pre-Compression on Micro-Scale Indentation Hardness of CoCrFeNiMn High-Entropy Alloy
-
摘要: 高熵合金具有优异的力学性能,如高硬度、高强度、优良的耐磨能力,以及优异的磁性能、高电阻率、高温力学和抗氧化性能等,因此具有非常广阔的应用前景。在高熵合金的应用中会出现合金内部预存塑性应变的情况,然而人们对高熵合金塑性变形后的力学性能研究较少,如微尺度压缩下的硬度等。在微压入测试中,由于存在尺度效应,需要采用相应的微压入测试理论来剔除尺度效应的影响。为此,采用分离式霍普金森压杆对CoCrFeNiMn高熵合金进行室温和高温(600、800、1000 ℃)动态预压缩,使合金具有不同的预压缩塑性应变,采用描述尺度效应的Nix-Gao微尺度压入理论模型,对不同塑性变形的动态预压缩样品在微尺度下的硬度进行表征。结果表明:在宏观预压缩下,不同的塑性变形对合金的微尺度压入硬度具有显著的影响,与轴向压缩相比,径向压缩下剔除尺度效应的硬度更大。该研究方法建立了宏观塑性变形与微尺度压入硬度之间的联系,也为实现通过微尺度压入测试判定材料内部塑性变形提供了新思路。Abstract: High-entropy alloys have excellent mechanical properties, such as high hardness, high strength, high resistivity, excellent wear resistance, excellent magnetic properties, and high-temperature mechanical and oxidation resistance. This also makes high-entropy alloys have a very broad application prospects. In the application of high-entropy alloys, there will be pre-existing plastic strains in the alloys. However, the mechanical properties of plastic deformed high-entropy alloys (such as the hardness under micro-scale compression) were less studied. In the micro-indentation test, it is necessary to eliminate the influence of the scale effect by adopting the corresponding micro-indentation test theory. Dynamic pre-compressions of CoCrFeNiMn high-entropy alloy at room temperature and high temperature (600, 800, 1000 ℃) were performed with split Hopkinson pressure bar in this paper, so that the alloy has different pre-compression plastic strains, and Nix-Gao which describes the scale effect is adopted. The hardness of dynamic pre-compression specimens with different plastic deformations was characterized at the micro-scale with the micro-scale indentation theory model. The results show that different plastic deformations under macro-precompression have a significant effect on the micro-scale indentation hardness of the alloy. Compared with axial compression, the hardness that eliminates the scale effect is greater than that of sample under radial compression. This research method establishes the relationship between the macroscopic plastic deformation and the micro-scale indentation hardness, and also provides a new idea for the realization of the micro-scale indentation test to determine the research method of the internal plastic deformation of materials.
-
Key words:
- high-entropy alloy /
- dynamic pre-compression /
- scale effect /
- hardness
-
表 1 室温动态预压缩下不同塑性变形对应的剔除尺度效应的硬度
Table 1. Scale effect elminated hardness of different plastic deformationsunder dynamic pre-compression at room temperature
Plastic strain/% H0/GPa Axial compression Radial compression 23 3.06 3.22 40 3.72 4.05 47 3.98 4.28 表 2 高温动态预压缩下不同塑性变形对应的剔除尺度效应的硬度
Table 2. Scale effect eliminated hardness of different plastic deformations under high temperature dynamic pre-compression
Plastic strain/% H0/GPa Axial compression Radial compression 51 3.70 3.92 61 3.28 3.54 72 2.96 2.69 -
[1] 叶均蔚, 陈瑞凯. 高熵合金 [J]. 科学发展, 2004(5): 16–21.YE J W, CHEN R K. High-entropy alloys [J]. Science Development, 2004(5): 16–21. [2] FANG S S, XIAO X S, XIA L, et al. Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses [J]. Journal of Non-Crystalline Solids, 2003, 321(1/2): 120–125. doi: 10.1016/S0022-3093(03)00155-8 [3] GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345(6201): 1153–1158. doi: 10.1126/SCIENCE.1254581 [4] HE F, WANG Z J, WU Q F, et al. Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures [J]. Scripta Materialia, 2017, 126: 15–19. doi: 10.1016/j.scriptamat.2016.08.008 [5] LIU W H, WU Y, HE J Y, et al. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy [J]. Scripta Materialia, 2013, 68(7): 526–529. doi: 10.1016/j.scriptamat.2012.12.002 [6] LU Z P, WANG H, CHEN M W, et al. An assessment on the future development of high-entropy alloys: summary from a recent workshop [J]. Intermetallics, 2015, 66: 67–76. doi: 10.1016/j.intermet.2015.06.021 [7] 张泰华. 微/纳米力学测试技术及其应用 [M]. 北京: 机械工业出版社, 2005.ZHANG T H. Test technology and applications of micro/nano-mechanics [M]. Beijing: China Machine Press, 2005. [8] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. Journal of Materials Research, 1992, 7(6): 1564–1583. doi: 10.1557/JMR.1992.1564 [9] PHARR G M, OLIVER W C, BROTZEN F R. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation [J]. Journal of Materials Research, 1992, 7(3): 613–617. doi: 10.1557/JMR.1992.0613 [10] PETHICA J B, OLIVER W C. Tip surface interactions in STM and AFM [J]. Physica Scripta, 1987, 1987(T19A): 61–66. [11] NIX W D, GAO H J. Indentation size effects in crystalline materials: a law for strain gradient plasticity [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(3): 411–425. doi: 10.1016/S0022-5096(97)00086-0 [12] DIRRAS G, COUQUE H, LILENSTEN L, et al. Mechanical behavior and microstructure of Ti20Hf20Zr20Ta20Nb20 high-entropy alloy loaded under quasi-static and dynamic compression conditions [J]. Materials Characterization, 2016, 111: 106–113. doi: 10.1016/j.matchar.2015.11.018 [13] PARK J M, MOON J, BAE J W, et al. Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy [J]. Materials Science and Engineering: A, 2018, 719: 155–163. doi: 10.1016/j.msea.2018.02.031 [14] 蔡珣. 材料科学与工程基础 [M]. 上海: 上海交通大学出版社, 2010.CAI X. Fundamentals of materials science and engineering [M]. Shanghai: Shanghai Jiao Tong University Press, 2010.