氦泡铝的层裂特性实验研究

李英华 常敬臻 张林 宋萍

李英华, 常敬臻, 张林, 宋萍. 氦泡铝的层裂特性实验研究[J]. 高压物理学报, 2021, 35(5): 054101. doi: 10.11858/gywlxb.20210770
引用本文: 李英华, 常敬臻, 张林, 宋萍. 氦泡铝的层裂特性实验研究[J]. 高压物理学报, 2021, 35(5): 054101. doi: 10.11858/gywlxb.20210770
LI Yinghua, CHANG Jingzhen, ZHANG Lin, SONG Ping. Experimental Investigation of Spall Damage in Pure Aluminum with Helium Bubbles[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054101. doi: 10.11858/gywlxb.20210770
Citation: LI Yinghua, CHANG Jingzhen, ZHANG Lin, SONG Ping. Experimental Investigation of Spall Damage in Pure Aluminum with Helium Bubbles[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054101. doi: 10.11858/gywlxb.20210770

氦泡铝的层裂特性实验研究

doi: 10.11858/gywlxb.20210770
基金项目: 重点实验室稳定支持项目(JCKYS2019212001);科学挑战计划(TZ2018001)
详细信息
    作者简介:

    李英华(1976-),女,硕士,副研究员,主要从事强冲击载荷下材料的动态响应与断裂特性研究. E-mail:li_yinghua@126.com

  • 中图分类号: O382.3

Experimental Investigation of Spall Damage in Pure Aluminum with Helium Bubbles

  • 摘要: 含氦泡材料的动态断裂性能是多个研究领域关注的重点。采用平板冲击实验技术,对含有氦泡、硼等杂质的铝材料进行了层裂实验研究,由双光源混频系统分别测量了纯铝、掺硼铝以及两种氦浓度的含氦泡铝样品的自由面速度,对比分析了不同杂质影响下铝材料的层裂强度及其差异。实验显示:纯铝的层裂强度为1.28 GPa,引入硼杂质使铝的层裂强度显著降低,降低幅度接近50%;中子辐照掺硼铝引入氦泡后,对铝的层裂性能没有造成进一步影响,说明采用中子辐照掺硼铝方法制备含氦泡铝时,氦泡效应不显著,即氦泡对材料的动态断裂性能影响有限。此外,根据实验测量结果,简要讨论了硼和氦泡等对铝的Hugoniot弹性极限的影响。

     

  • 图  平板冲击实验原理图(a)及典型的样品自由面速度剖面(b)

    Figure  1.  Schematic of plane shock experiment (a) and the typical free surface velocity of the sample (b)

    图  纯铝、掺硼铝和氦泡铝Ⅰ样品的自由面速度剖面

    Figure  2.  Free surface velocities of pure Al, Al-10B and Al with helium bubbles Ⅰ

    图  两种氦浓度的氦泡铝(辐照掺硼铝)样品的自由面速度剖面

    Figure  3.  Free surface velocity profiles of two neutron irradiated Al-10B samples with different helium density

    图  几种铝的层裂强度

    Figure  4.  Spall strength of several kinds of aluminum material

    图  掺硼铝(0.07% 10B)的金相照片

    Figure  5.  Optical micrograph of Al-10B (0.07% 10B)

    表  1  实验数据

    Table  1.   Experimental data

    Exp. No.LY12
    thickness/mm
    Flyer
    velocity/(m·s−1)
    Sample
    thickness/mm
    Yhel/GPa$\sigma $spall/GPa$ \dot{\varepsilon } $/(104 s−1)Material
    Shot 11.5006542.9250.0621.289.1Al
    2.7360.1230.627.8Al with He bubbles Ⅰ
    Shot 21.5036033.0500.1300.554.3Al-10B (0.07% 10B)
    Shot 31.5007202.7760.1530.698.6Al with He bubbles Ⅱ
    下载: 导出CSV

    表  2  密度和声速

    Table  2.   Density and sound velocity

    Material${\,\rho }$0/(g·cm−3)c1/(km·s−1)ct/(km·s−1)cb/(km·s−1)
    Al2.6996.5613.1305.476
    Al with He bubbles Ⅰ2.6966.5143.1805.381
    Al-10B (0.07% 10B)2.6996.5423.1555.434
    Al with He bubbles Ⅱ2.6956.5053.2155.341
    下载: 导出CSV
  • [1] 吕铮, 刘春明. 快中子反应堆核心结构材料的辐照损伤 [J]. 材料与冶金学报, 2011, 10(3): 203–208. doi: 10.3969/j.issn.1671-6620.2011.03.011

    LÜ Z, LIU C M. Irradiation damage of structural materials for fast reactor application [J]. Journal of Materials and Metallurgy, 2011, 10(3): 203–208. doi: 10.3969/j.issn.1671-6620.2011.03.011
    [2] ZINKLE S J. Fusion materials science: overview of challenges and recent progress [J]. Physics of Plasmas, 2005, 12(5): 058101. doi: 10.1063/1.1880013
    [3] BLOOM E E, BUSBY J T, DUTY C E, et al. Critical questions in materials science and engineering for successful development of fusion power [J]. Journal of Nuclear Materials, 2007, 367/370: 1–10. doi: 10.1016/j.jnucmat.2007.02.007
    [4] 张崇宏, 杨义涛, 宋银, 等. 一种低活化铁素体/马氏体钢的高能重离子辐照效应研究 [J]. 原子核物理评论, 2009, 26(1): 48–54. doi: 10.11804/NuclPhysRev.26.01.048

    ZHANG C H, YANG Y T, SONG Y, et al. Analysis of effects in a low-activation ferritic/martensitic steel by high-energy heavy-ion irradiation [J]. Nuclear Physics Review, 2009, 26(1): 48–54. doi: 10.11804/NuclPhysRev.26.01.048
    [5] BIRTCHER R C, DONNELLY S E, TEMPLIER C. Evolution of helium bubbles in aluminum during heavy-ion irradiation [J]. Physical Review B, 1994, 50(2): 764–769. doi: 10.1103/PhysRevB.50.764
    [6] IWAKIRI H, YASUNAGA K, MORISHITA K, et al. Microstructure evolution in tungsten during low-energy helium ion irradiation [J]. Journal of Nuclear Materials, 2000, 283: 1134–1138. doi: 10.1016/s0022-3115(00)00289-0
    [7] VISHNYAKOV V M, DONNELLY S E, CARTER G. The influence of impurities on the growth of helium-induced cavities in silicon [J]. Journal of Applied Physics, 2003, 94(1): 238–244. doi: 10.1063/1.1576493
    [8] 高云亮, 朱芫江, 李进平. Al辐照损伤初期的第一性原理研究 [J]. 物理学报, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104

    GAO Y L, ZHU Y J, LI J P. First-principle study of initial irradiation damage in aluminum [J]. Acta Physica Sinica, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [9] GLAM B, STRAUSS M, ELIEZER S, et al. Shock compression and spall formation in aluminum containing helium bubbles at room temperature and near the melting temperature: experiments and simulations [J]. International Journal of Impact Engineering, 2014, 65: 1–12. doi: 10.1016/j.ijimpeng.2013.10.010
    [10] GLAM B, ELIEZER S, MORENO D, et al. Dynamic fracture and spall in aluminum with helium bubbles [J]. International Journal of Fracture, 2010, 163(1): 217–224. doi: 10.1007/s10704-009-9437-1
    [11] XIAO D W, HE L F, ZHOU P, et al. Spall in aluminium with helium bubbles under laser shock loading [J]. Chinese Physics Letters, 2017, 34(5): 056201. doi: 10.1088/0256-307x/34/5/056201
    [12] ZHOU T T, HE A M, WANG P, et al. Spall damage in single crystal Al with helium bubbles under decaying shock loading via molecular dynamics study [J]. Computational Materials Science, 2019, 162: 255–267. doi: 10.1016/j.commatsci.2019.02.019
    [13] NOVIKOV S A. Spall strength of materials under shock load [J]. Journal of Applied Mechanics and Technical Physics, 1967(3): 109–120.
    [14] JOHNSON J N, GRAY Ⅲ G T, BOURNE N K. Effect of pulse duration and strain rate on incipient spall fracture in copper [J]. Journal of Applied Physics, 1999, 86(9): 4892–4901. doi: 10.1063/1.371527
    [15] DAVISON L, SHAHINPOOR M. High-pressure shock compression of solids Ⅲ [M]. New York: Springer-Verlag, 1998: 93–95.
    [16] 陶天炯, 翁继东, 王翔. 一种双光源外差测试技术 [J]. 光电工程, 2011, 38(10): 39–45.

    TAO T J, WENG J D, WANG X. A dual laser heterodyne velocimetry [J]. Opto-Electronic Engineering, 2011, 38(10): 39–45.
    [17] 何方成, 宫兆斌. 超声波声速测量技术及其在材料评价中的应用 [J]. 材料工程, 2003(8): 33–34, 32. doi: 10.3969/j.issn.1001-4381.2003.08.009

    HE F C, GONG Z B. Ultrasonic velocity measuring technology and its application in materials evaluation [J]. Journal of Materials Engineering, 2003(8): 33–34, 32. doi: 10.3969/j.issn.1001-4381.2003.08.009
    [18] CHEN X, ASAY J R, DWIVEDI S K. Spall behavior of aluminum with varying microstructures [J]. Journal of Applied Physics, 2006, 99(2): 023528. doi: 10.1063/1.2165409
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  2324
  • HTML全文浏览量:  886
  • PDF下载量:  44
出版历程
  • 收稿日期:  2021-04-10
  • 修回日期:  2021-05-04

目录

    /

    返回文章
    返回